
Date: 14 November 2005

Systems Modeling Language (SysML) Specification

version 1.0 alpha

SysML Partners (www.sysml.org)†

†Includes the following Partners who have submitted Letters of Intent for the OMG’s UML for Systems Engineering RFP:
Telelogic AB, Motorola, Inc., and Gentleware AG.

GENERAL NOTICE

This document describes a proposed language specification developed by an open source project using an open source
license for redistribution and use. In accordance with the open source license of the previous version of this specification
(System Modeling Language (SysML) Specification v. 0.9, 10 January 2005), the copyright notice for this revision is fol-
lowed by the copyright notice, terms, conditions, notices and disclaimers of the previous version, all of which also apply
to this revision. A summary of the modifications to this version of the specification can be found in the Change Summary
section of the Preface.

COPYRIGHT NOTICE

© 2005 Gentleware AG
© 2005 Motorola, Inc.
© 2005 Northrop Grumman
© 2005 PivotPoint Technology Corporation
© 2005 Telelogic AB

COPYRIGHT NOTICE FOR SysML v. 0.9

© 2003-2005 American Systems Corporation
© 2003-2005 ARTISAN Software Tools
© 2003-2005 BAE SYSTEMS
© 2003-2005 The Boeing Company
© 2003-2005 Ceira Technologies
© 2003-2005 Deere & Company
© 2003-2005 EADS Astrium GmbH
© 2003-2005 EmbeddedPlus Engineering
© 2003-2005 Eurostep Group AB
© 2003-2005 Gentleware AG
© 2003-2005 I-Logix, Inc.
© 2003-2005 International Business Machines
© 2003-2005 International Council on Systems Engineering
© 2003-2005 Israel Aircraft Industries
© 2003-2005 Lockheed Martin Corporation
© 2003-2005 Motorola, Inc.
© 2003-2005 Northrop Grumman
© 2003-2005 oose.de Dienstleistungen für innovative Informatik GmbH
© 2003-2005 PivotPoint Technology Corporation
© 2003-2005 Raytheon Company
© 2003-2005 Telelogic AB
© 2003-2005 THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

This document describes a proposed language specification developed by an informal partnership of vendors and users,
with input from additional reviewers and contributors. This document does not represent a commitment to implement any
portion of this specification in any company’s products. See the full text of this document for additional disclaimers and
acknowledgments. The information contained in this document is subject to change without notice.

The specification proposes to customize the Unified Modeling Language (UML) specification of the Object Management
Group (OMG) to address the requirements of Systems Engineering. These include many of the requirements requested by

the UML for Systems Engineering RFP, OMG document number ad/03-03-41. This document includes references to and
excerpts from the UML 2.0 Superstructure Specification (OMG document number ptc/2004-10-02) and UML 2.0 Infra-
structure Specification (Final Adopted Specification; OMG document number ptc/2003-09-15) with copyright holders
and conditions as noted in those documents.

LICENSES

Redistribution and use of this specification, with or without modification, are permitted provided that the following
conditions are met:
• Redistributions of this specification must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials provided with the distribution.
• The Copyright Holders listed in the above copyright notice may not be used to endorse or promote products

derived from this specification without specific prior written permission.
• All modified versions of this specification must include a prominent notice stating how and when the

specification was modified.

THIS SPECIFICATION IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SPECIFICATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

TRADEMARKS

Systems Modeling Language and SysML, which are used to identify this specification, are not usable as trademarks since SysML Part-
ners has established their usage to identify this specification without any trademark status or restriction. Organizations that wish to
establish trademarks related to this specification should distinguish them somehow from SysML and Systems Modeling Language, for
example by adding a unique prefix (e.g., OMG SysML).

Unified Modeling Language and UML are trademarks of the OMG. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

Systems Modeling Language and SysML, which are used to identify this specification, are not usable as trademarks since SysML Part-
ners has established their usage to identify this specification without any trademark status or restriction. Organizations that wish to
establish trademarks related to this specification should distinguish them somehow from SysML and Systems Modeling Language, for
example by adding a unique prefix (e.g., OMG SysML).

Unified Modeling Language and UML are trademarks of the OMG. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

Pluralitas non est ponenda sine necessitate.

Plurality should not be posited without necessity.

— William of Ockham (1285–1349)

Preface

The Systems Modeling Language (SysML) continues to evolve as tool vendors and users gain experience in implementing and
applying it to solve pragmatic systems engineering problems. The following sections summarize changes since the last public
version of this specification (System Modeling Language (SysML) Specification v. 0.9, 10 January 2005), and provide informa-
tion required by the OMG submission process.

0.1 CHANGE SUMMARY
The following is a summary of the changes since the last published SysML specification, based on extensive vendor imple-
mentation and user application experience:

• General Improvements

• Less is more. The SysML has been reduced in size and complexity, yet its expressive power is demonstrably
increased, as is evidenced by the enhanced revised Sample Problem, which is more mature and pragmatic than its
predecessor. For example, the Sample Problem now addresses modeling Measures of Effectiveness and Trade
Studies, which are essential for practicing systems engineers. See Appendix B, “Sample Problem” for details.

• The language architecture is refined and clarified. SysML is now specified as a strict UML profile, so it is clear
to both vendors and users which subset of UML constructs is reused, and what constructs have been added or
modified by SysML. In addition, both normative and non-normative model libraries have been added in a straight-
forward and consistent way that makes it easier for vendors and users to futher customize the language for their
special needs. See Chapter 6, “Language Architecture” for an overview of the language architecture.

• Executable models “just work.” A key benefit of the reduced complexity and the stricter compliance with UML
2.0 profile semantics is that the new Sample Problem is not only more sophisticated, it is also demonstrably exe-
cutable. Stated otherwise, SysML v. 1.0 is not just yet another engineering drawing notation; it is an architectur-
ally complete and fully executable language that can drive system engineering simulations. See “Support
Documents” on page 8 for information about obtaining executable models.

• Alignment with other standards and best practices is increased. Concepts and examples are better aligned
with other system engineering standards and best practices, such as IEEE-Std-1471-2000 (IEEE Recommended
Practice for Architectural Description of Software-Intensive Systems), IEEE Std. 1220-1998: IEEE Standard for
Application and Management of the Systems Engineering Process, OMG ptc/04-04-02: UML 2.0 Testing Profile
Specification. See “Relationships to Other Standards” on page 8 for information about alignment with other stan-
dards.

• General information accessiblity is significantly improved. The specification has been reorganized and rewrit-
ten to improve readability and consistency, and indices and table lists have been added to improve navigation.

• Improvements to Structural Constructs

• Classes and Assemblies have been unified using the Block structural construct, and Flow Ports and Flow specifi-
cations have been added to specify input and output items that may include data as well as physical entities, such
as fluids, solids, gases, and energy. See Chapter 8, “Blocks” for details.

• Parametric Constraints are defined by extending UML Collaborations, which provide more natural semantics and
distinctive notation for this new diagram type. An additional benefit of this approach is that SysML can now sup-
port the specification of pattern structures. See Chapter 9, “Parametric Constraints” for details.

• The definition/usage dichotomy for structural constructs is made expliciit and applied consistently, which makes
defining and applying Blocks and Parametric Constraints more intuitive and straightforward. See Part II -, “Struc-
SysML Specification v. 1.0 alpha i

tural Constructs” for an explanation.

• Improvements to Behavioral Constructs

• Activities have been refined to reduce their complexity and increase consistency with the rest of the specification.
See Chapter 10, “Activities” for details.

• Interactions has been reduced to a subset of Sequence diagrams, which decreases the semantic overlap with Activ-
ities. See Chapter 11, “Sequences” for details.

• Improvements to Cross-Cutting Constructs

• Requirements have been enhanced so that users can customize and assign classification categories, risks and veri-
fication methods. See Chapter 14, “Requirements” for details.

• Allocation trace dependencies have been unified and simplified, and the content for tabular format is described in
a non-prescriptive manner. See Chapter 15, “Allocations” for details.

• Model management constructs have been added and include support for views and viewpoints in a manner com-
patible with EEE-Std-1471-2000 (IEEE Recommended Practice for Architectural Description of Software-Inten-
sive Systems). See Chapter 16, “Model Management” for details.

• Normative types and enumerations used by the SysML profile are modularly defined in a separate package. See
Chapter 17, “Types” for details.

• Other improvements

• The complete abstract syntax for the SysML profile and the UML 2.0 metamodel reused by the profile are pro-
vided to facilitate understanding, validate architecture integrity, and faciliate implementation and model inter-
change using XMI and AP-233. See “Support Documents” on page 8 for information about obtaining the
complete abstract syntax for the SysML profile.

• Non-normative extensions and model libraries are defined in separate appendices. See Appendix C, “Non-Norma-
tive Extensions” and Appendix D, “Non-Normative Model Library”for details.

• The Requirements Traceabilty Matrix for tracking SysML compliance with the UML for SE RFP is now gener-
ated with a requirements management tool, so the information is more complete, accurate and consistent. See
Appendix G, “Requirements Traceability Matrix” for details.

0.2 OMG RFP RESPONSE
 This Systems Modeling Language (SysML) Specification draft is being submitted to the OMG in response to the UML for SE
RFP (omg document ad/03-04-04). Material in this submission that responds directly to the format required by the OMG sub-
mission process is localized within this section. By separating the information unique to the OMG technical process and sub-
mission format, and referencing the applicable portions of the technical specification, we are able to organize the specification
in a form that can facilitate further stages of the OMG technology adoption and ISO Publicly Available Specification (PAS)
processes.

The following SysML Partners have submitted Letters of Intent to the OMG to respond to its UML for SE RFP: Telelogic AB,
Motorola, Inc., and Gentleware AG. A complete list of submitters and supporters is available at www.SysML.org/Part-
ners.htm.

The information required by Section 4.9.2 (“Required Outline”) of the UML for SE RFP is provided in the following parts.
ii SysML Specification v. 1.0 alpha

0.2.1 Part I of RFP Response

Copyright Waiver and Trademark Usage

An unlimited number of copies of this document may be made by OMG or by OMG members in accordance with the Berke-
ley-style open source license described in the Licenses section that precedes this Preface. Note that the copyrights for this
specification are shared by a group of companies, some of whom are not OMG members.

As noted in the Trademarks section that precedes this preface, Systems Modeling Language and SysML, which are
used to identify this specification, are not usable as trademarks since SysML Partners has established their usage to identify
this specification without any trademark status or restriction. Organizations that wish to establish trademarks related to this
specification should distinguish them somehow from SysML and Systems Modeling Language (for example, by adding a
unique prefix such as OMG SysML.

Submission contact points

The following person may be contacted for information regarding this submission:

Cris Kobryn (Cris.Kobryn@sysml.org OR Cris.Kobryn@telelogic.com)

In addition, the following public mailing list is available for providing feedback and requesting information about this specifi-
cation: SysMLforum@googlegroups.com.

Guide to material in the submission

An overview of the background, goals and technical content of this proposal is described in Chapter 1 “Scope” of this docu-
ment.

Overall design rationale

The design rationales for the language architecture and the specification approach used by this proposal are explained in Chap-
ter 6, “Language Architecture” and Chapter 7, “Language Formalism”.

Statement of proof of concept

This proposed specification is being prototyped or implemented by more than one of the submitting organizations.

Resolution of RFP requirements and requests

The proposed specification makes use of existing OMG specifications and follows OMG guidelines in conformance with Sec-
tion 5 “General Requirements on Proposals” of the RFP.

 Section 6.5 “Mandatory Requirements” of the RFP requires a specific form of matrix that indicates how the proposed
solution satisfies each of numbered requirements in the “Specific Requirements on Proposals” section of the RFP. Appen-
dix G, “Requirements Traceability Matrix” and Chapter 2, “Compliance” address this requirement.

Response to RFP issues to be discussed.

Section 6.7 of the RFP, “Issues to be discussed” contains a single issue, which requests a sample problem description as fol-
lows:

Submissions shall include models of one or more sample problems to demonstrate how their customization of UML for
SE addresses the requirements of this RFP. The submitter may select one or more sample problems of their choosing,
or apply their proposed solution to the sample problem descriptions included on the RFP page at http://syseng.omg.org/
UML_for_SE_RFP.htm. The compliance matrix referred to in Section 6.5, must include a reference to the portion of
the sample problem, which demonstrates how each requirement is being addressed.

The response to this “Issue to be discussed” is provided in Appendix B, “Sample Problem” of this document.
SysML Specification v. 1.0 alpha iii

0.2.2 Part II of RFP Response

Proposed specification

The proposed specification is contained in the body of this document (including appendices). This specification includes both
normative and explanatory material in a format that is largely self-contained, and which could be adopted and published in
conformance with the OMG process.

Proposed compliance points

Proposed compliance points are described in Chapter 2 “Compliance” of this specification.

0.2.3 Part III of RFP Response

Summary of requests versus requirements

See “Resolution of RFP requirements and requests” on page iii.

Changes or extensions required to adopted OMG specifications

No changes or extensions are required.
iv SysML Specification v. 1.0 alpha

Table of Contents

Preface ..i
0.1 CHANGE SUMMARY ... i
0.2 OMG RFP RESPONSE ... ii

0.2.1 Part I of RFP Response .. iii
0.2.2 Part II of RFP Response ... iv
0.2.3 Part III of RFP Response .. iv

Part I. Introduction .. 1
1 Scope .. 3
2 Compliance ... 3

2.1 Compliance to the SysML specification .. 3
2.2 Compliance of SysML to UML .. 5

3 References .. 7
3.1 Normative References .. 7
3.2 Non-Normative References .. 7

4 Terms and definitions .. 7
5 Additional information .. 8

5.1 Support Documents .. 8
5.2 Relationships to Other Standards... 8
5.3 How to Read this Specification ... 9
5.4 Acknowledgements... 9

6 Language Architecture .. 11
6.1 Design Principles .. 11
6.2 Package structure... 11
6.3 Extension Mechanisms... 20
6.4 4-Layer Metamodel Architecture... 21
6.5 Alignment with XMI and AP-233 ... 21

7 Language Formalism ... 23
7.1 Level of Formalism ... 23
7.2 Chapter Specification Structure .. 23
7.3 Use of Constraints .. 24
7.4 Use of Natural Language.. 24
7.5 Conventions and Typography... 24

Part II - Structural Constructs .. 25
8 Blocks .. 27

8.1 Overview... 27
8.2 Diagram elements... 29
8.3 Package structure... 32
8.4 UML extensions .. 33

8.4.1 Stereotypes ... 33
Block 33
FlowPort 34
FlowSpecification 35
ServicePort 35

8.4.2 Diagram extensions .. 35
Block Definition diagram 35
Internal Block diagram 36

8.5 Usage examples ... 36
SysML Specification v

9 Parametric Constraints .. 39
9.1 Overview... 39
9.2 Diagram elements... 40
9.3 Package structure... 41
9.4 UML extensions .. 41

9.4.1 Stereotypes ... 41
Binding .. 41
ParametricConstraint .. 42
ParametricConstraintUse ... 43

9.4.2 Diagram extensions .. 43
Parametric diagram .. 43

9.5 Usage examples ... 43
Part III - Behavioral Constructs ... 47
10 Activities .. 49

10.1 Overview... 49
10.2 Diagram elements... 50
10.3 Package structure... 56
10.4 UML extensions .. 57

10.4.1 Stereotypes ... 57
Continuous ... 57
ControlValue (a predefined enumeration) .. 58
ControlOperator .. 58
Discrete .. 58
NoBuffer ... 59
Overwrite .. 59
Optional .. 59
Probability ... 59
Rate ... 60

10.4.2 Diagram extensions .. 60
Activity .. 60
ControlFlow .. 61
ObjectNode ... 62

10.5 Usage examples ... 63
11 Sequences ... 71

11.1 Overview... 71
11.2 Diagram elements... 72
11.3 Package structure... 75
11.4 UML extensions .. 75
11.5 Usage examples ... 75

12 State Machines .. 81
12.1 Overview... 81
12.2 Diagram elements... 82
12.3 Package structure... 84
12.4 UML extensions .. 85
12.5 Usage examples ... 85

13 Use Cases ... 87
13.1 Overview... 87
13.2 Diagram elements... 88
13.3 Package structure... 89
13.4 UML extensions .. 89
13.5 Usage examples ... 90
vi SysML Specification

Part IV - Crosscutting Constructs .. 91
14 Requirements .. 93

14.1 Overview... 93
14.2 Diagram elements... 94
14.3 Package structure.. 95
14.4 UML extensions .. 95

14.4.1 Stereotypes ... 96
Derive ... 96
Requirement ... 97
RequirementKind (user defined enumeration) ... 97
RiskKind (user defined enumeration) ... 97
Satisfy ... 98
TestCase .. 98
Verdict (a user defined enumeration) ... 98
Verify ... 98
VerifyMethodKind (user defined enumeration) ... 99

14.4.2 Table extensions ... 99
14.5 Usage examples ... 99

15 Allocations ... 107
15.1 Overview... 107
15.2 Diagram elements... 107
15.3 Package structure... 109
15.4 UML extensions .. 109

15.4.1 Stereotypes ... 109
Allocate ... 109
Allocated ... 110

15.4.2 Diagram extensions .. 110
15.4.3 Table extensions ... 111

15.5 Usage examples ... 111
16 Model Management ... 115

16.1 Overview... 115
16.2 Diagram elements... 115
16.3 Package structure... 117
16.4 UML extensions .. 117

16.4.1 Stereotypes ... 118
Conform .. 118
View ... 118
Viewpoint .. 118

16.4.2 Diagram extensions .. 119
16.5 Usage examples ... 119

17 Types ... 121
17.1 Overview... 121
17.2 Diagram elements... 122
17.3 Package structure.. 123
17.4 UML extensions .. 123

17.4.1 Enumerations .. 123
ControlValue ... 123
RequirementKind .. 123
RiskKind ... 124
Verdict .. 124
VerifyMethodKind ... 124
SysML Specification vii

17.4.2 DataTypes ... 125
Complex ... 125
Real ... 125

17.5 Usage examples ... 125
18 Auxiliary Constructs ... 127

18.1 Overview... 127
18.2 Diagram elements... 128
18.3 Package structure... 130
18.4 UML extensions .. 130

18.4.1 Stereotypes ... 131
DistributedValue ... 131
Problem .. 131
Rationale .. 131
ValueProperty ... 132
ValueType .. 132

18.4.2 Diagram extensions .. 133
18.5 Usage examples ... 133

19 Profiles & Model Libraries .. 135
19.1 Overview... 135
19.2 Diagram elements... 136
19.3 Package Structure .. 139
19.4 UML extensions .. 139

19.4.1 Metaclass extensions .. 139
19.4.2 Diagram extensions .. 139

Stereotype .. 139
19.5 Usage examples ... 141

19.5.1 Defining a Profile .. 141
19.5.2 Adding Stereotypes to a Profile ... 142
19.5.3 Defining a Model Library that uses a Profile ... 143
19.5.4 Guidance on whether to use a Stereotype or Class .. 143
19.5.5 Using a Profile ... 144
19.5.6 Using a Stereotype .. 144
19.5.7 Using a Model Library Element ... 145

Part V - Appendices .. 147
Appendix A. Diagrams ... 149

A.1 Overview... 149
Appendix B. Sample Problem ... 151

B.1 Overview... 151
B.2 Problem Summary.. 151
B.3 Diagrams .. 151

B.3.1 Requirements Diagram for the “Hybrid SUV” .. 151
B.3.2 Trade Study and Measures of Effectiveness .. 152
B.3.3 Requirements Derivation ... 158
B.3.4 Requirements Verification ... 159
B.3.5 Use Case Diagram .. 160
B.3.6 Sequence Diagrams .. 161
B.3.7 Activity Diagram for “Control Power” ... 165
B.3.8 External Block Diagram for the Hybrid SUV .. 169
B.3.9 Transmission Properties ... 169
B.3.10 Allocations ... 171
B.3.11 Block Diagram ... 173
viii SysML Specification

B.3.12 Interfaces .. 174
B.3.13 State Machine Diagram for the Transmission “Shift” behavior 175
B.3.14 Parametric Block Diagram .. 177
B.3.15 Requirements Satisfaction .. 178
B.3.16 Complete Traceability ... 179

Appendix C. Non-Normative Extensions... 183
C.1 Activities ... 183

C.1.1 Overview ... 183
C.1.2 Diagram Elements ... 183
C.1.3 Package Structure ... 184
C.1.4 UML Extensions .. 184

Stereotypes .. 185
Diagram Extensions ... 186

C.1.5 Usage Examples ... 187
C.2 Requirements... 188

C.2.1 Overview ... 188
C.2.2 Diagram elements ... 189
C.2.3 Package Structure ... 189
C.2.4 UML Extensions .. 190

Stereotypes 190
 Diagram Extensions 192

C.2.5 Compliance Level .. 192
C.2.6 Usage Example ... 192

Appendix D. Non-Normative Model Library .. 193
D.1 Pre-defined ValueTypes... 193
D.2 Pre-defined Enumeration Literals... 194

Appendix E. OMG XMI Model Interchange... 197
E.1 Overview .. 197

Appendix F. ISO AP233 Model Interchange ... 199
F.1 Overview... 199
F.2 Background .. 199
F.3 Approach .. 202

F.3.1 Capturing Express models in UML .. 203
F.3.2 Converting Express models to UML .. 205

F.4 Model Alignment... 206
F.4.1 SysML Requirements Model ... 206
F.4.2 AP233 Requirements Model ... 208
F.4.3 Mapping Module: Requirements ... 215
F.4.4 Mapping between AP233 and SysML ... 216

F.5 Proof of Concept... 216
Appendix G. Requirements Traceability Matrix... 219

G.1 Overview .. 219
SysML Specification ix

x SysML Specification

List of Figures
SysML Reuse of UML 2.0 5
Relationship of SysML Profile Package to UML and Prototypical User Model 13
Package Contents of SysML Profile 14
Package Contents of Non-Normative Model Libraries 15
Package Contents of Non-Normative Extensions 16
Package Contents of Default Enumerations 17
Package Contents of Blocks 18
Package Contents of UML2 Ruse for System Blocks 19
package Contents of Activities 20
Abstract syntax for Blocks (1 of 2). 33
Abstract syntax for Blocks (2 of 2). 33
FlowPort notation. 34
Service Port definition. 36
Service Port usage. 37
Flow Port definition. 37
Flow Port usage. 38
Abstract syntax for Parametric Constraints. 41
Parametric constraint definition using internal structure notation. 44
Parametric constraint definition using collaboration notation. 44
Parametric constraints on a Block diagram. 45
Parametric constraints on a Parametric diagram. 46
Abstract syntax for Activities. 57
Class diagram with activities as classes. 61
CallBehaviorAction notation.in activty diagram 61
Class diagram with activities as blocks associated with types of object nodes. 62
ObjectNode notation in activity diagrams. 62
ObjectNode notation in activity diagrams. 63
Activity Diagram Example: Control Power (1 of 4) 64
Activity Diagram Example: Control Power (2 of 4) 65
Activity Diagram Example: Control Power (3 of 4) 66
Activity Diagram Example: Control Power (4 of 4) 67
Continuous system example 1. 68
Continuous system example 2. 69
Continuous system example 3. 69
Top-level Sequence diagram for Drive Car 76
Accelerate scenario 77
Acceleration with allocations 78
State-Centric State Machine Diagram: Transmission “Switch Gear” Behavior 85
Transition-Centric State Machine Diagram: Transmission “Switch Gear” Behavior 86
Top-Level Use Cases for HybridSUV system. 90
Package structure for Requirements. 95
Abstract syntax for Requirements. 96
Decomposition of a compound requirement. 100
Requirements derivation using compact stereotype notation. 101
Requirements satisfaction. 102
Requirements verification. 103
Requirements traceability 104
Example of requirements trace dependency table 105
Abstract syntax for Allocations. 109

Block Definition Diagram:Allocation of behavior to the Transmission 112
Properties of the Transmission Block showing allocations 113
Example Allocation Table 114
Abstract syntax for Model Management. 117
Functional view conforming to its viewpoint. 119
Traceability across views: black box perspective 119
Traceability between Functional and Design views: white box perspective 120
Package structure for Requirements. 123
Abstract syntax for Auxiliary Constructs. 131
Block Definition diagram: Transmission properties 133
Internal Block diagram: Transmission properties 134
Defining a stereotype 140
Using a stereotype 140
 Using stereotypes and showing values 141
Other notational forms for showing values 141
Definition of a profile 141
Profile Contents 142
Model libraries example 143
A model with applied profile and imported model library 144
Using two stereotypes on one model element 144
Using model library elements 145
SysML Diagram Taxonomy 149
Requirement Diagram:Top-Level User Requirements 152
Measures of Effectiveness for the Hybrid SUV 153
Key Performance Parameters for the Hybrid SUV 154
Usage of constraints to map KPPs to MoE scores for Acceleration MoE 155
Constraint definitions for Newton’s Law 156
Block Definition diagram of composite parametric constraint IntergrateAndNormalize 157
Internal Block diagram of composite parametric constraint IntergrateAndNormalize 158
Requirement Diagram:Requirements Derivation 159
Requirement Diagram:Requirements Verification 160
Use Case Diagram 161
Sequence Diagram: Top Level “black-box” 162
Sequence Diagram: Accelerate Scenario 163
Sequence Diagram: Accelerate Scenario allocated to components of Hybrid SUV 164
Activity Diagram Example: Control Power (1 of 4) 165
Activity Diagram Example: Control Power (2 of 4) 166
Activity Diagram Example: Control Power (3 of 4) 167
Activity Diagram Example: Control Power (4 of 4) 168
Block Definition Diagram: Equipment Breakdown Structure 169
Block Definition Diagram: Properties of Transmission 170
External Block Diagram: Allocation of Behavior to the Transmission 171
Example tabular format of allocation traces 172
Block Diagram: Internal structure of the Power Subsystem 173
External Block Diagram: Command and Telemetry Interface Definitions 174
External Block Diagram: Flow Specification Definitions 175
State-Centric State Machine Diagram: Transmission “Switch Gear” Behavior 176
Transition-Centric State Machine Diagram: Transmission “Switch Gear” Behavior 177
Mass Constraints 178
Requirement Diagram: Requirement Satisfaction 179
Requirement Diagram: Requirement Traceability 180

Sample Traceability Table 181
Package Structure for SysML Activities 184
Abstract Syntax for Activity Non-Normative extensions. 185
Example activity with «EFFBD» stereotype applied 187
Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities. 187
Package Structure for SysML Requirements 189
Abstract Syntax for Effectiveness Metamodel. 190
Measures of Effectiveness. 192
AP233 and related protocols 200
AP233 Toplevel Architecture 201
Models in use for the SysML to AP233 alignment 203
Excerpt of the Express meta model 204
UML Profile for Express 205
Activities to derive the AP233 UML model from the Express model 206
SysML requirements model 207
Basic pattern for AP233 208
Property assignment 210
Representation of properties in AP233 211
Breakdown structure in AP233 213
System breakdown hierarchy 214
Mapping Module Requirements 215
Model-derived APIs 217
API abstraction layers 218

List of Tables
Graphical nodes for Blocks. 29
Graphical paths for Blocks. 31
Graphical nodes for Parametric Constraints. 40
Graphical nodes for Activities. 50
Graphical paths for Activities. 52
Other graphical elements included in Activity diagrams. 54
Graphical nodes for State Machines. 82
Graphical paths for State Machines. 84
Graphical nodes for Use Cases. 88
Graphical paths for Use Cases. 88
Graphical nodes for Requirements. 94
Graphical paths for Requirements. 94
Graphical nodes for Allocations. 107
Graphical paths for Allocations. 108
Graphical nodes for Model Management. 115
Graphical paths for Model Management. 116
Graphical nodes for Requirements. 122
Graphical nodes for Auxiliary Constructs. 128
Graphical paths for Auxiliary Constructs. 129
Graphical nodes for Profiles 136
Graphical paths for Profiles 136
Graphical nodes for Profiles 138
Graphical nodes for non-normative extensions to Activities 183
Graphical nodes included in effectiveness element 189
Graphical paths for effectiveness. 189

Part I. Introduction
This specification defines a general-purpose modeling language for systems engineering applications, called the Systems
Modeling Language (SysML). SysML supports the specification, analysis, design, verification and validation of a broad
range of complex systems. These systems may include hardware, software, information, processes, personnel, and facilities.

The orgins of the SysML initiative can be traced to a strategic decision by the International Council on Systems Engi-
neering’s (INCOSE) Model Driven Systems Design workgroup in January 2001 to customize the Unified Modeling Lan-
guage (UML) for systems engineering applications. This resulted in a collaborative effort between INCOSE and the Object
Management Group (OMG), which maintains the UML specification, to jointly charter the OMG Systems Engineering
Domain Special Interest Group (SE DSIG) in July 2001. The SE DSIG, with support from INCOSE and the ISO AP 233
workgroup, developed the requirements for the modeling language, which were subsequently issued by the OMG as part of
the UML for Systems Engineering Request for Proposal (UML for SE RFP; OMG document ad/03-03-41) in March 2003.

Currently it is common practice for systems engineers to use a wide range of modeling languages, tools and techniques on
large systems projects. In a manner similar to how UML unified the modeling languages used in the software industry, SysML
is intended to unify the diverse modeling languages currently used by systems engineers.

Since SysML is being defined as a UML 2.0 Profile, it is able to reuse the relatively mature notation and semantics of a
second generation modeling language. In addition, systems engineers modeling with SysML 1.0 and software engineers mod-
eling with UML 2.0 will be able to collaborate when modeling software-intensive systems. This will improve communication
among the various stakeholders who participate in the systems development process and promote interoperability among mod-
eling tools. It is anticipated that SysML will be customized to model domain specific applications, such as automotive, aero-
space, communications and information systems.

The next following chapters describe the SysML language architecture and the specification formalism used to define
SysML.
SysML Specification v. 1.0 alpha 1

2 SysML Specification v. 1.0 alpha

1 Scope

The purpose of this document is to specify the Systems Modeling Language (SysML), a general-purpose modeling language
for systems engineering. This specification documents the concrete syntax (notation), abstract syntax, semantics, and design
rationales for SysML, and provides examples of how it can be used to solve common systems engineering problems. Its intent
is to specify the language so that systems engineering modelers can learn to apply and use it, modeling tool vendors can imple-
ment and support it, and both can provide constructive feedback to improve future versions. The following public mailing list
is available for providing feedback and requesting information about this specification: SysMLforum@googlegroups.com.

SysML is designed to provide simple but powerful constructs for modeling a wide range of systems engineering prob-
lems. This first version of SysML is particularly effective in specifying requirements, system structure, functional
behavior, allocations, basic testing and basic trade studies during the specification and design phases of systems engi-
neering. It does not support decision trees, comprehensive testing, comprehensive trade studies or fully executable
functional behavior, although we encourage users and vendors to experiment in these areas and let us know about their
experiences. We expect that these language shortcomings will be addressed in future version of SysML as we gain more expe-
rience implementing and applying it.

SysML is being aligned with two evolving interoperability standards: the OMG XMI model interchange standard for
UML modeling tools and the ISO AP-233 data interchange standard for systems engineering tools. While the details of this
alignment are beyond the scope of this specification, basic information about the XMI and AP-233 interoperability standards
can be found in and relevant references are furnished in Appendix E, “OMG XMI Model Interchange” and Appendix F, “ISO
AP233 Model Interchange”.

The following sections provide background information about this specification, including information about compliance
and a glossary of terms. A guide for both systems engineers and vendors who read this specification is provided in Section 5.3,
’How to Read this Specification’. The main body of this document (Parts II-IV) describes the normative technical content of
the specification. The appendices include non-normative technical content that will aid in the understanding, implementation,
and application of this specification.

2 Compliance

As with UML, the basic units of compliance for SysML are the packages that define the SysML profile, which are described
in Chapter 6, “Language Architecture”. Since SysML is defined as a strict Profile of UML, there are two kinds of compliance
that need to be addressed:

• Compliance to the SysML specification. The kind of compliance is concerned with defining the extent to which a
SysML tool implements this specification.

• Compliance of the SysML specification to the UML specification. The kind of compliance is concerned with defining
the extent to which the SysML specification reuses the UML specification.

2.1 Compliance to the SysML specification
All SysML language constructs are categorized into two levels of compliance, Basic and Advanced, as is explained in Chapter
7, “Language Formalism”. Consequently, it is natural to organize SysML compliance into Basic and Advanced levels, as is
shown in Table 1 and Table 2, respectively. Compliance within a level is further decomposed by the packages that define the
major diagram types. The following compliance options are valid for each level or package:

• no compliance: Implementation does not comply with the concrete syntax, abstract syntax, well-formedness rules,
semantics of the package.
SysML Specification v. 1.0 alpha 3

• full compliance: Implementation fully complies with the concrete syntax, abstract syntax, well-formedness rules,
semantics of the package.

• XMI compliance: Implementation complies with XMI model interchange of the package.

• AP233 compliance: Implementation complies with AP-233 model interchange of the package.

For an implementation of SysML to comply with a particular SysML package requires complying with any packages on which
the particular package depends. Since SysML is defined as a strict profile of UML, this includes not only other SysML
packages, but all UML packages on which the SysML package depends.

.

Table 1 Summary of SysML Compliance Points: Basic

Compliance Level Compliance Point Valid Options

Basic SysML All packages, all Basic level constructs no, full, XMI, AP233

Basic Activities, Basic level constructs no, full, XMI, AP233

Basic Allocations, Basic level constructs no, full, XMI, AP233

Basic Auxiliary Constructs, Basic level constructs no, full, XMI, AP233

Basic Blocks, Basic level constructs no, full, XMI, AP233

Basic Sequences, Basic level constructs no, full, XMI, AP233

Basic Parametric Constraints, Basic level constructs no, full, XMI, AP233

Basic Requirements, Basic level constructs no, full, XMI, AP233

Basic State Machines, Basic level constructs no, full, XMI, AP233

Basic Use Cases, Basic level constructs no, full, XMI, AP233

Table 2 Summary of SysML Compliance Points: Advanced

Compliance Level Compliance Point Valid Options

Advanced All packages, all Advanced level constructs no, full, XMI, AP233

Advanced Activities, Advanced level constructs no, full, XMI, AP233

Advanced Allocations, Advanced level constructs no, full, XMI, AP233

Advanced Axuiliary Constructs, Advanced level
constructs

no, full, XMI, AP233

Advanced Blocks, Advanced level constructs no, full, XMI, AP233

Advanced Sequences, Advanced level constructs no, full, XMI, AP233

Advanced Parametric Constraints, Advanced level
constructs

no, full, XMI, AP233

Advanced Requirements, Advanced level constructs no, full, XMI, AP233

Advanced State Machines, Advanced level constructs no, full, XMI, AP233

Advanced Use Cases, Advanced level constructs no, full, XMI, AP233
4 SysML Specification v. 1.0 alpha

2.2 Compliance of SysML to UML
In order to better understand the relationship between the UML and SysML languages, consider the Venn diagram shown in
Figure 1-1, where the sets of language constructs that comprise the UML and SysML languages are shown as the circles
marked “UML 2.0” and “SysML”, respectively. The intersection of the two circles indicates the common diagrams that
SysML and UML share, which are listed in the legend portion of the figure. The region marked “New Diagrams” in the figure
indicates the new diagram types defined for SysML that have no counterparts in UML. Note that a significant part of UML is
not required to implement SysML, which results in a smaller language that is easier to learn, implement and apply.

Figure 1-1. SysML Reuse of UML 2.0

The compliance matrix in Table 3 below specifies the UML 2 Superstructure packages that a SysML tool must reuse in order
to implement SysML. Stated otherwise, these UML 2 Superstructure packages must be available for any SysML
implementation. The valid options are shown below. The Package Structure in the individual chapters also shows which
packages are required for SysML.

• no: SysML does not require this UML package. However, SysML is intended to be compatible with the package if it
is used.

• partial: SysML only requires selected classes from this UML package.

SysMLUML 2.0

Common diagrams: Activities, Block Definitions (UML2::Classes), Internal Blocks
(UML2::Composite Structures), Sequences, State Machines, Use Cases

New diagrams: Allocations, Parametric Constraints, Requirements
SysML Specification v. 1.0 alpha 5

• complete: SysML requires this complete UML package.

Table 3 UML 2.0 Superstructure Packages Required for SysML

UML
Compliance Level

Compliance Point UML Package Required for SysML

Basic (Level 1) All packages complete

Intermediate (Level 2) Actions::IntermediateActions partial

Intermediate (Level 2) Activities::
IntermediateActivities

partial

Intermediate (Level 2) Activities::
StructuredActivities

partial

Intermediate (Level 2) CommonBehaviors::
Communications

partial

Intermediate (Level 2) CommonBehaviors::Time partial

Intermediate (Level 2) Components::BasicComponents no

Intermediate (Level 2) CompositeStructures::InvocationActions partial

Intermediate (Level 2) CompositeStructures::Ports partial

Intermediate (Level 2) CompositeStructures::
StructuredClasses

partial

Intermediate (Level 2) Deployments::Artifacts no

Intermediate (Level 2) Deployments::Nodes no

Intermediate (Level 2) Interactions::Fragments partial

Intermediate (Level 2) Profiles partial

Intermediate (Level 2) StateMachines::
BehaviorStateMachines

partial

Intermediate (Level 2) StateMachines::
MaximumOneRegion

no

Complete (Level 3) Actions::CompleteActions partial

Complete (Level 3) Activities::CompleteActivities partial

Complete (Level 3) Activities::
CompleteStructuredActivities

partial

Complete (Level 3) Activities::
ExtraStructuredActivities

partial

Complete (Level 3) AuxiliaryConstructs::
InformationFlows

partial

Complete (Level 3) AuxiliaryConstructs::
Models

partial

Complete (Level 3) AuxiliaryConstructs::Templates no
6 SysML Specification v. 1.0 alpha

3 References

3.1 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• [UML 2005] OMG formal/05-07-04: Unified Modeling Language: Superstructure version 2.0

3.2 Non-Normative References
The following non-normative references have proven useful in developing concepts and examples for this specification:

• [IEEE-Std-1471 2000] IEEE-Std-1471-2000: IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems

• [IEEE-Std-1220 1998] IEEE Std. 1220-1998: IEEE Standard for Application and Management of the Systems Engi-
neering Process

• [UMLforTesting 2004] OMG ptc/04-04-02: UML 2.0 Testing Profile Specification

4 Terms and definitions

For the purposes of this specification, the terms and definitions given in the following apply. The lexicon is a synthesis of
terms and definitions from various sources, including, but not limited to, previous UML glossaries, the UML for SE RFP, and
the INCOSE MDSD Concept Model Semantic Dictionary.

The following conventions are used in the term definitions below:

• The entries usually begin with a lowercase letter. An initial uppercase letter is used when a word is usually capitalized
in standard practice. Acronyms are all capitalized, unless they traditionally appear in all lowercase.

Complete (Level 3) Classes::
AssociationClasses

no

Complete (Level 3) Classes::
PowerTypes

no

Complete (Level 3) CompositeStructures::
Collaborations

partial

Complete (Level 3) Components::
PackagingComponents

no

Complete (Level 3) Deployments::
ComponentDeployments

no

Complete (Level 3) StateMachines::ProtocolStateMachines no

Table 3 UML 2.0 Superstructure Packages Required for SysML
SysML Specification v. 1.0 alpha 7

• When one or more words in a multi-word term is enclosed in brackets, it indicates that those words are optional when
referring to the term. For example, use case [class] may be referred to as simply use case.

• A phrase of the form “Contrast: <term>” refers to a term that has an opposed or substantively different meaning.

• A phrase of the form “See: <term>” refers to a related term that has a similar, but not synonymous meaning.

• A phrase of the form “Synonym: <term>” indicates that the term has the same meaning as another term, which is ref-
erenced.

• A phrase of the form “Acronym: <term>” indicates that the term is an acronym. The reader is usually referred to the
spelled-out term for the definition, unless the spelled-out term is rarely used.)

Note: SysML v. 0.9 reviewer feedback found the previous version of this glossary to contain many definitions that
were not meaningful to practicing system engineers, and numerous others that were inconsistent with the
normative part of this specification, as well as itself. Consequently, the glossary is being rewritten so that all
definitions will be meaningful to domain experts, and are consistent with the rest of the specification. The updated
glossary will be included in the SysML v. 1.0 beta update.

5 Additional information

5.1 Support Documents
The following support documents and models are relevant to this specification:

• Compliance and Requirements Traceability for SysML v. 1.0a: A statement of compliance and a Requirments Trace-
ability Matrix (RTM) that shows how this specification satisfies the requirements of the UML for Systems Engi-
neering RFP. See Appendix G, “Requirements Traceability Matrix”. [.DOC format]

• Abstract Syntax for SysML v. 1.0a: Complete abstract syntax for the SysML profile and the UML 2.0 metamodel
reused by the profile is provided to facilitate understanding, validate architecture integrity, and faciliate implementa-
tion and model interchange using XMI and AP-233. Available in multiple formats [HTML, .XMI, tool-specific].

• Sample Problem Model for SysML v. 1.0a: Executable and non-executable implementations of SysML v. 1.0 Sample
Problem in multiple formats [tool-specific, HTML]. See Appendix B, “Sample Problem”.

These suppport documents are available for download from the Artifacts page of the SysML web (www.SysML.org/arti-
facts.htm).

5.2 Relationships to Other Standards
SysML is defined as an extension of the OMG UML 2.0 Superstructure Specification (OMG document number ptc/2004-10-
02). If SysML requires any changes to this UML specification, they will be described in a future version of this document.

SysML is also being aligned with two evolving interoperability standards: the ISO AP-233 data interchange standard for
systems engineering tools and the OMG XMI 2.0 model interchange standard for UML 2.0 modeling tools. While the details
of this alignment are beyond the scope of this specification, overviews of alignment issues and relevant references are fur-
nished in Appendix E, “OMG XMI Model Interchange” and Appendix F, “ISO AP233 Model Interchange”.
8 SysML Specification v. 1.0 alpha

SysML supports the OMG’s Model Driven Architecture initiative by its reuse of the UML standard, and its architec-
tural alignment with the OMG XMI 2.0 and ISO AP-233 interoperability standards.

A partial listing of other system engineering standards and best practices that have influenced the development of this
specification is included in 3.2, ’Non-Normative References’.

5.3 How to Read this Specification
This specification is intended to be read by systems engineers so that they may learn and apply SysML, and by modeling tool
vendors so that they may implement and support SysML. As background all readers are encouraged to first read Part I “Intro-
duction”.

After reading the introduction, readers should be prepared to explore the user-level constructs defined in the next three
parts: Part II - “Structural Constructs”, Part III - “Behavioral Constructs”, and Part IV - “Crosscutting Constructs”. Systems
engineers should read the Overview, Diagram Elements and Usage Examples sections in each chapter, and explore the Pack-
age Structure and UML Extension sections as they see fit. Modeling tool vendors should read all sections. In addition, Systems
engineers who want to understand how to apply the language and assess its coverage should read the Appendix B, “Sample
Problem” and Appendix G, “Requirements Traceability Matrix” respectively.

Although the chapters are organized into logical groupings that can be read sequentially, this is a reference specification
and is intended to be read in a non-sequential manner.

5.4 Acknowledgements
The following companies and organizations have contributed to the development of this specification:

• Industry

• BAE SYSTEMS

• Boeing

• Deere & Company

• EADS Astrium

• Eurostep

• Israel Aircraft Industries

• Lockheed Martin Corporation

• Motorola

• Northrop Grumman

• oose.de Dienstleistungen für innovative Informatik GmbH

• Raytheon

• THALES

• Government

• NASA/Jet Propulsion Laboratory

• National Institute of Standards and Technology (NIST)

• DoD/Office of the Secretary of Defense (OSD)

• Vendors
SysML Specification v. 1.0 alpha 9

• ARTISAN Software Tools

• Ceira Technologies

• EmbeddedPlus Engineering

• Gentleware

• IBM

• I-Logix

• Mentor Graphics

• PivotPoint Technology

• Telelogic

• Structured Software Systems Limited

• Vitech

• Liaisons

• Consultative Committee for Space Data Systems (CCSDS)

• Embedded Architecture and Software Technologies (EAST)

• International Council on Systems Engineering (INCOSE)

• ISO STEP AP-233

• Systems Level Design Language (SLDL) and Rosetta

The following persons were members of the specification team that designed and wrote this specification: Vincent Arnould,
Laurent Balmelli, Ian Bailey, James Baker, Conrad Bock, Carolyn Boettcher, Roger Burkhart, Murray Cantor, Bruce Dou-
glass, Harald Eisenmann, Anders Ek, Brenda Ellis, Marilyn Escue, Sanford Friedenthal, Eran Gery, Drora Goshen, Hal Hamil-
ton, Dwayne Hardy, James Hummel, Cris Kobryn, Michael Latta, Robert Long, Alan Moore, Veronique Normand, Salah
Obeid, Dave Oliver, David Price, Chris Sibbald, Joseph Skipper, Rick Steiner, Robert Thompson, Lars Tufvesson, Jim U’Ren,
Thomas Weigert, Tim Weilkiens, and Brian Willard.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Perry Alexander, Randy Bruce, Michael Jesse Chonoles, Mike Dickerson, Orazio Gurrieri, Julian
Johnson, Dave Kosan, Bryan Lima, Jim Long, Henrik Lönn, Jamel Marzouki, Jim Schier, Matthias Weber, Bran Selic, and
Peter Shames.
10 SysML Specification v. 1.0 alpha

6 Language Architecture

This first version of the SysML specification is defined as strict Profile of UML. The advantage of this approach is that SysML
reuses and extends proven modeling constructs from UML, the industry standard for modeling software intensive systems.
Consequently, a large number of system and software engineers who already know UML can easily learn SysML, and the
large installed base of UML tools can be readily adapted to support the SysML profile. The disadvantage of this approach is
that, in some limited cases, constructs that were originally designed for software intensive systems may be less intuitive for
system engineers who lack UML or object paradigm experience. When considering the tradeoffs, the SysML language archi-
tects determined that the advantages far outweighed the disadvantages, and decided to design the initial version as a strict
UML Profile. This design decision will be revisited in the future if, after more experience with SysML implementations and
applications it becomes apparent that SysML requires its own metamodel (cf. reusing the UML metamodel via the Profile
mechanism).

This following sections describe the design principles and package structure of the SysML language.

6.1 Design Principles
The following fundamental design principles have guided the development of SysML:

• Parsimony: SysML is based on a subset of UML that economically satisfies the basic requirements of the systems engi-
neering community as defined in the UML for SE RFP. Additional constructs and diagram types are added to this UML subset
only as needed to address derived system engineering requirements discovered during the language specification process. This
disciplined application of Occam’s razor results in a more concise, yet more semantically expressive language which is easier
to learn, implement and apply.

• Reuse: SysML strictly reuses UML constructs wherever practical, and when modifications to UML are required, they are
done in a manner that strives to minimize changes to the underlying language. Consequently, SysML is intended to be straight-
forward for UML vendors to implement.

• Modularity: The principle of strong cohesion and loose coupling is applied to organize normative and non-normative lan-
guage constructs into stereotype extension and model library packages.

• Layering: Layering is used to organize the SysML profile in two ways. First, since SysML is defined as strict UML Pro-
file, all SysML packages may be considered an extension layer of the underlying UML metamodel. Second, a SysML lan-
guage constructs are organized into two levels of compliance, Basic and Advanced, which constitutes an additional layering.

• Partitioning: Partitioning is used to organize conceptual areas within the same layer. SysML’s package structure, which is
explained in the following section, partitions the SysML profile into packages that correspond to the language’s major diagram
types. This partitioning is largely isomorphic with UML’s package structure, and is intended to facilitate reuse and implemen-
tation.

• Extensibility: SysML supports the same extension mechanisms furnished by UML (metaclasses, stereotypes, model
libraries), so that the language can be further extended for specific systems engineering domains, such as automotive, aero-
space, manufacturing and communications.

• Interoperability: SysML is aligned with the semantics of the ISO AP-233 data interchange standard to support interoper-
ability among engineering tools, and inherits the XMI interchange from UML.

6.2 Package structure
The relationship of the SysML «profile» package to other packages, such as the UML 2 Reused «metamodel» package, which
represents the subset of UML 2.0 Superstructure model elements that are imported and reused, is shown in Figure 6-2. The
prototypical UserModel package can apply the SysML «profile» package directly, and it can also import a Non-Normative
SysML Specification v. 1.0 alpha 11

Model Libraries package that applies the the SysML «profile» package. Furthermore, in addition to applying the normative
SysML «profile» package, the UserModel package can optionally apply the Non-Normative Extensions «profile» package.

The subpackages contained in the SysML «profile», the Non-Normative Model Libraries «modelLibrary», and the Non-
Normative Extensions «profile» packages are shown in Figure 6-3, Figure 6-4 and Figure 6-5, respectively. Figure 6-6 shows a
further drill-down into the contents of the DefaultEnumerations package, which is a subpackage of the the Non-Normative
Model Libraries «modelLibrary» shown in Figure 6-4.

Each of the subpackages of the the SysML «profile» package shown in Figure 6-3 is further decomposed into Basic and
Advanced subpackages, which correspond to the Basic and Advanced compliance levels of this specification. (See Section 2,
“Compliance,” on page 3). In those cases where the package contains only Basic constructs , the Advanced subpackage is
omitted. Figure 6-7 shows the contents of the Blocks package, which contains only a Basic subpackage that imports the UML2
Reuse for SysML Blocks package, the contents of which are shown in Figure 6-8. The UML2 Reuse for SysML Blocks subpack-
ages constain the UML 2 metamodel elements that are stereotyped by the Blocks package. Figure 6-9 shows the subpackages
of the Activities package, which contains both Basic and Advanced constructs.

In this manner the SysML «profile» package is organized and applied. Although a further exploration of the SysML pack-
age structure is outside the scope of this overview, the reader who is interested in learning more details is encouraged to
explore the package structure of the Abstract Syntax for SysML v. 1.0a support document. See Section 5.1, “Support Docu-
ments,” on page 8.
12 SysML Specification v. 1.0 alpha

Figure 6-2. Relationship of SysML Profile Package to UML and Prototypical User Model

Language Architecture <<informal>>package 'SysML Meta-Model' {1/1}

'Non-Normative Model Libraries'

UserModel

<<profile>>

SysML

<<apply>><<apply>>

<<apply>><<apply>>

'UML 2 Reused'

<<import>><<import>>

<<import>><<import>>

Includes pre-defined ValueTypes (ex. Kilograms)
 may be edited by the user (it is a user model)

<<profile>>

'Non-Normative Extensions'

<<apply>><<apply>>
SysML Specification v. 1.0 alpha 13

Figure 6-3. Package Contents of SysML Profile

SysML Profile Packages <<profile>>package SysML {1/1}

Activities

Sequences

Statemachines

UseCases

Allocations

Blocks

'Parametric Constraints'

Profiles

Requirements

AuxiliaryConstructs

Types

<<import>><<import>>

<<import>><<import>>

<<import>><<import>>

ModelManagement
14 SysML Specification v. 1.0 alpha

Figure 6-4. Package Contents of Non-Normative Model Libraries

Non-Normative Model Library Packages package 'Non-Normative Model Libraries' {1/1}

PreDefinedValueTypes

DefaultEnumerations

::'SysML Meta-Model'::SysML::Types

<<import>><<import>><<import>><<import>>
SysML Specification v. 1.0 alpha 15

Figure 6-5. Package Contents of Non-Normative Extensions

Package Dependencies <<profile>>package 'Non-Normative Extensions' {1/1}

MOE

::'SysML Meta-Model'::SysML::Requirements

<<import>><<import>>

EFFBD

::'SysML Meta-Model'::SysML::Activities

<<import>><<import>>
16 SysML Specification v. 1.0 alpha

Figure 6-6. Package Contents of Default Enumerations

Default Enumerations package DefaultEnumerations {1/1}

<<primitive>>

::'SysML Meta-Model'::SysML::Types::ControlValue

<<primitive>>

::'SysML Meta-Model'::SysML::Types::ReqKind

<<primitive>>

::'SysML Meta-Model'::SysML::Types::RiskKind

<<primitive>>

::'SysML Meta-Model'::SysML::Types::VerifyMethodKind
<<primitive>>

::'SysML Meta-Model'::SysML::Types::Verdict

<<primitive>>

DefaultControlValue

disable
enable

<<primitive>>

DefaultReqKind

Functional
Performance
Interface

<<primitive>>

DefaultRiskKind

High
Medium
Low

<<primitive>>

DefaultVerifyKind

Analysis
Demonstration
Inspection
Test

<<primitive>>

DefaultVerdict

pass
fail
inconclusive
error
SysML Specification v. 1.0 alpha 17

Figure 6-7. Package Contents of Blocks

Package Dependencies package Blocks {1/1}

Basic

::'SysML Meta-Model'::'UML 2 Reused'::
'UML2 Reuse for SysML Blocks'

<<import>><<import>>
18 SysML Specification v. 1.0 alpha

Figure 6-8. Package Contents of UML2 Ruse for System Blocks

UML2 reuse for Blocks package 'UML2 Reuse for SysML Blocks' {1/1}

::'SysML Meta-Model'::'UML 2
Reused'::'UML2 Reuse for SysML

Blocks'

::'UML2 Meta-Model ptc 04-10-02'::UML::Classes::Kernel

<<import>><<import>>

::'UML2 Meta-Model ptc 04-10-02'::UML::
Classes::Dependencies::Dependency

<<import>><<import>>

::'UML2 Meta-Model ptc 04-10-02'::UML::
CompositeStructures::InternalStructures::Property

::'UML2 Meta-Model ptc 04-10-02'::UML::
CompositeStructures::InternalStructures::Connector

ML2 Meta-Model ptc 04-10-02'::UML::
CompositeStructures::Ports::Port

::'UML2 Meta-Model ptc 04-10-02'::UML::
CompositeStructures::StructuredClasses::Class

::'UML2 Meta-Model ptc 04-10-02'::UML::
CommonBehaviors::Communications::Interface

::'UML2 Meta-Model ptc 04-10-02'::UML::CommonBehaviors::Communications::Signal

<<import>><<import>>

<<import>><<import>>

<<import>><<import>>

<<import>><<import>>

<<import>><<import>>

<<import>><<import>>
SysML Specification v. 1.0 alpha 19

6.3 Extension Mechanisms
This specification uses several extension mechanisms for defining SysML:

• stereotypes

• diagram extensions

• model library elements

SysML defines UML stereotypes that extend the semantics and notation of UML metamodel elements in a manner consistent
with the Profile mechanism defined in the UML Superstructure specification [UML2 2005]. SysML diagram extensions define
new diagram notations that supplement diagram notations reused from UML. Model library elements define model elements

Figure 6-9. package Contents of Activities

Package Dependencies package Activities {1/1}

Basic

::'UML2 Meta-Model ptc 04-10-02'::UML::
Activities::IntermediateActivities

<<import>><<import>>

Advanced

::'SysML Meta-Model'::'UML 2 Reused'::
'UML2 Reuse for SysML Activities'

<<import>><<import>>

::'SysML Meta-Model'::'Non-Normative Model Libraries'

<<import>><<import>>
20 SysML Specification v. 1.0 alpha

that can be reused and modifed by the user, without special knowledge of the underlying metamodel.

Chapter 19 “Profiles & Model Libraries”, Appendix C, “Non-Normative Extensions” and Appendix D, “Non-Normative
Model Library” show examples how systems engineers can further customize SysML using stereotypes and model libraries.

6.4 4-Layer Metamodel Architecture
Like the UML 2.0 metamodel on which the SysML profile is based, the SysML language architecture conforms to a 4-layer
metmodel architecture pattern. In particular, the SysML profile extends the UML metamodel layer (a.k.a., the “M2” layer). so
that both the SysML profile and the UML metamodel may be considered instances of the Meta Object Facility meta-meta-
model (a.k.a., the “M3” layer). SysML model library elements are defined at the modeling layer (a.k.a., the “M1” layer).

6.5 Alignment with XMI and AP-233
The SysML profile is architecturally aligned with the OMG XMI and ISO AP-233 model interchange standards, which is
explained further in Appendix E, “OMG XMI Model Interchange” and Appendix F, “ISO AP233 Model Interchange”, respec-
tively.
SysML Specification v. 1.0 alpha 21

22 SysML Specification v. 1.0 alpha

7 Language Formalism

This chapter explains the specification techniques used to define SysML. These specification techniques have the following
goals:

• Correctness.

• Precision.

• Conciseness.

• Consistency.

• Understandability.

The following sections explain the level of formalism, the chapter specification structure, constraint specification, and the
specification technique used in this specification describes SysML as a UML extension that is defined using stereotypes and
metaclasses.

7.1 Level of Formalism
 SysML is defined using metamodeling and profiling techniques that use precise natural language (English) to specify

contraints and semantics. In general, the syntax of the language is specified precisely so that SysML will support tool interop-
erability using OMG XMI and via ISO AP-233 model interchange formats.

SysML’s detailed semantics are described using natural language, striking a difficult balance between formal rigor and
understandability. As executable SysML modeling tools become more mainstream, it is also likely that more formal tech-
niques will be applied to improve the precsion of SysML.

7.2 Chapter Specification Structure
This section provides information about how the top-level SysML packages are defined in each chapter. Each chapter has one
or more of the following sections:

Overview

This section provides an overview of the modeling constructs defined in the subject package, which are usually associated
with one or more SysML diagram types.

Diagram elements

This section provides tables that summarize the concrete syntax (notation) and abstract syntax references for the graphic nodes
and paths associated with the relevant diagram types.

Package structure

This section specifies the package import dependencies on the UML metamodel.

UML extensions

This section specifies how the UML metamodel is extended via stereotypes, diagram extensions, and table extensions to pro-
duce semantics and notation for new SysML constructs. Stereotypes are specified with the following sections:

• Definition: A brief statement conveying the fundamental meaning of the stereotype. This definition is reused in the
SysML glossary.
SysML Specification v. 1.0 alpha 23

• Description: An explanation of the meaning and significance of the stereotype in isolation, and in relation to other con-
structs.

• Constraints: The well-formedness rules for applying stereotype.

• Notation: A description of the concrete syntax used for visualizing the stereotype.

Usage examples

This section shows how the SysML modeling constructs can be applied to solve pragmatic systems engineering problems.

7.3 Use of Constraints
SysML constraints are expressed using precise natural language (English).

7.4 Use of Natural Language
SysML uses natural language (English) for much of the specification, including the specification of constraints, and providing
general descriptive text for stereotypes and other model elements.

7.5 Conventions and Typography
In the description of SysML, the following conventions have been used:

• While referring to stereoptypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as they
appear in the model are always used.

• No visibilities are presented in the diagrams, since all elements are public.

• If a mandatory section does not apply for an extension, use the text: ‘N/A’ (‘Not Applicable’). If an optional section is not
applicable, it is not included.

• Stereotype, metaclass and metassociation names: initial embedded capitals are used (e.g., ‘ModelElement’, ‘ElementRef-
erence’).

• Boolean metaattribute names: always start with ‘is’ (e.g., ‘isComposite’).

• Enumeration types: always end with “Kind” (e.g., ‘DependencyKind’).
24 SysML Specification v. 1.0 alpha

Part II - Structural Constructs
This Part of the specification defines the static, skeletal constructs used in SysML structure diagrams, which include Block
diagrams and the Parametric Constraint diagrams. Both of these structural diagram types enforce a separation of concerns
between definitions (specifications) and usages (applications), which is comonly referred to as the defintion/usage dichotomy.
In the case of Block diagrams, blocks are used for definitions, and parts are used for applications. In the case of Parametric
Constraints, parametric constraints are used for definitions, and parametric constraint usages are used for applications.
SysML Specification v. 1.0 alpha 25

26 SysML Specification v. 1.0 alpha

8 Blocks

8.1 Overview
A Block is a modular unit of system that encapsulates its contents, which include attributes, operations and constraints. Blocks
can be connected to other Blocks to form composite structures, and can be decomposed into parts to expose internal structures.
Blocks can be used to specify the structure of a system as a collection of properties that fulfill specific roles (parts) within a
larger whole. A block also shows the connections between its roles (parts) that enable their interoperation within the context of
the larger whole. Blocks may own ports, and thus can be connected to external parts in a larger context in which they are used.
Each part is specified by a block with its own properties, ports, and internal structure, so a uniform set of elements is used to
represent multiple levels of a system hierarchy.

SysML enforces a separation of concerns between structural definitions (specifications) and usages (applications), which
is comonly referred to as the defintion/usage dichotomy. In the case of block diagrams, blocks are used for definitions, and
parts are used for applications.

Blocks provides a general-purpose capability to model systems as trees of modular components. The specific kinds of
components, the kinds of connections between them, and the ways these elements combine to define the total system can be
chosen according to the goals of a particular system model. The SysML block model can be used throughout all phases of sys-
tem specification and design, and can be applied to many different kinds of systems. These systems may be logical or physical,
and may include software, hardware or human organizations. The parts in these systems may interact by many different means,
such as software operations, discrete state transitions, flows of inputs and outputs, or continuous interactions.

Blocks and their associated diagrams are based on the UML concept of composite structures. UML composite structures
provide the essential mechanisms to define a block in terms of its structural features. These include its internal parts, ports that
can be used to connect it to other parts in its environment, and connections between parts as well as parts and ports that enable
their interaction within a containing whole. UML composite structure diagrams can be used to show either a “black box view,”
in which only the externally visible elements are visible, or a “white box view,” which exhibits the internal details of its parts
and connections. They go further than the “architectural block diagrams” common to many engineering disciplines by specify-
ing patterns of occurrences of their internal parts and connections, using structural features.

Blocks

To distinguish UML structured classes that adopt the SysML conventions for modeling system architecture, SysML
defines a stereotype of UML classes called «block». Because SysML blocks may be applied to a wide variety of system types,
SysML blocks include only a subset of the modeling elements that UML defines for composite structures. In particular,
SysML does not include the UML component concepts; components are modeled as blocks in SysML.

SysML blocks build on structured classes to define a basic set of modeling elements, in order to enable the modeling of
system structures early in a development cycle before any commitment has been made as to how a modeled element may be
realized. Blocks can be coupled with other Blocks via Connectors to form systems of increasing complexity: components, sub-
systems, systems, and systems-of-systems.

Service Ports

A ServicePort specifies the services that the owning Block provides (offers) to its environment as well as the services that the
owning Block requires of its environment. ServicePorts are specified (typed) using Interfaces. For example, a Block represent-
ing an automatic transmission in a car might have a ServicePort that specifies, via its provided interface, that the Block can
accept a command to change gears. The engine control unit in the car might have a ServicePort that specifies, via its required
interface, that it can send a command to change gears. Service Ports reuse UML::Port notation and semantics.
SysML Specification v. 1.0 alpha 27

Flow Ports

A FlowPort specifies the input and output items that may flow between a Block and its environment. Input and output items
may include data as well as physical entities, such as fluids, solids, gases, and energy. FlowPorts are defined using FlowSpeci-
fications. For example, a Block representing an automatic transmission in a car might have a FlowPort that specifies torque as
an input and another flow port that specifies torque as an output. FlowPorts are a stereotype of the UML metaclass Port and
extend its notation and semantics.

The following sections describe the abstract syntax, package structure, UML extensions, compliance levels and usage
examples for Blocks.
28 SysML Specification v. 1.0 alpha

8.2 Diagram elements

Table 4. Graphical nodes for Blocks.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

BlockDefinition
Diagram

none Basic

Block SysML::Blocks::Block Basic

DataType UML::Classes::Ker-
nel::Datatype

Basic

FlowPort SysML::Blocks::FlowPort Basic

Block Definition DiagramName

Block1 Block2

Constraints
{ prop2 > 1000.0 }

Operations
op1(param1: PT): return Type1

Attributes
prop1: pTypeA
prop2: Real = 500.0 {unit = meter}

«block»BlockName

Constraints
{ prop2 > 1000.0 }

Operations
op1(param1: PT): return Type1

Attributes
prop1: pTypeA
prop2: Real = 500.0 {unit = meter}

DataTypeName

«block»
Transmission

p1

iTrIn

iTrOut

«part»
trans:Transmission

p1
SysML Specification v. 1.0 alpha 29

FlowSpecification SysML::Blocks::FlowSpecifica-
tion

Basic

Interface UML::CommonBehav-
iors::Communications::Inter-
face

Basic

Non-Composite
Property

UML::Classes::Kernel::
Property with isComposite equal
False

Basic

Part UML::Classes::Kernel::
Property with isComposite equal
True

Basic

Table 4. Graphical nodes for Blocks.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

t: Torque

«flowSpecification»
iEng

iEng

iTrans

«interface»
iTransCmd

iTransCmd

iTransData

propertyName:
TypeName

partName :
TypeName
30 SysML Specification v. 1.0 alpha

ServicePort SysML::Blocks::ServicePort Basic

Table 5. Graphical paths for Blocks.

PATH NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Aggregation UML::Classes::Kernel::
Property with aggregation equal
shared

Basic

Association UML::Classes::Kernel::Associa-
tion

Basic

Composition UML::Classes::Kernel::
Property with aggregation equal
composite

Basic

Connector UML::CompositeStruc-
tures::InternalStructures::Con-
nector

Basic

Containment UML::Classess::Kernel::Class::
nestedClassifier

Basic

Generalization UML::Classes::Kernel::Gener-
alization

Basic

Realization UML::Classes::Kernel::Realiza-
tion

Basic

Table 4. Graphical nodes for Blocks.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

«block»
Transmission

p3

iTransCmd

iTransData

«part»
trans:Transmission

p3

connectorName: associationName
SysML Specification v. 1.0 alpha 31

8.3 Package structure

Figure 8-1. Package structure for Blocks.

UML::CompositeStructures::
StructuredClasses

SysML::Blocks

«import»
32 SysML Specification v. 1.0 alpha

8.4 UML extensions

Figure 8-2. Abstract syntax for Blocks (1 of 2).

Figure 8-3. Abstract syntax for Blocks (2 of 2).

8.4.1 Stereotypes

8.4.1.1 Block

Definition

A Block is a modular unit of system that encapsulates its contents, which include attributes, operations and constraints. Blocks
can be connected to other Blocks to form composite structures, and can be decomposed into parts.

Description

A Block is a stereotype of structured class that describes a structure of interconnected parts. A «block» may be used to model
the structure of any kind of system, regardless of whether the components of the system consist of logical, physical, software,
hardware, human, or other kinds of entities.

Besides the stereotypes introduced in this chapter, additional user-defined stereotypes may be defined as part of a user
profile to categorize different kinds of systems and the roles they fill in particular contexts. Such distinctions may indicate spe-
cific stages of refinement (e.g., functional, physical), or a particular context in which a system appears (e.g., internal, external).
The «block» stereotype should be used as an initial common root for such user-defined system types.

«metaclass»
UML::

CompositeStructures::
StructuredClasses:

Class

«stereotype»
Block

«stereotype»
FlowSpecification

«metaclass»
UML::

CommonBehaviors::
Communications::

Interface
isBehavior:Boolean
isService: Boolean

«metaclass»
UML::CompositeStructures::

Ports::Port

«stereotype»
ServicePort

«stereotype»
FlowPort
SysML Specification v. 1.0 alpha 33

Notation

A Block is shown using a UML classifier symbol with the stereotype «block». The internal structure of a block is defined
in a block definition diagram.

8.4.1.2 FlowPort

Definition

A FlowPort is an interaction point that specifies the input and/or output items that may flow between a Block and its environ-
ment. Input and output items may include data as well as physical entities, such as fluids, solids, gases, and energy.

Description

A FlowPort is a stereotype of Port that specifies an interaction point between a block and its environment for the flow of
material, energy or data items. FlowPorts may be associated with a provided and a required FlowSpecifications. These
FlowSpecifications determine what properties can flow between a Block and its environment.

Constraints

[1] The type of a FlowPort must be a FlowSpecification.

[2] The required interfaces of a FlowPort must be FlowSpecifications.

[3] The provided interfaces of a FlowPort must be FlowSpecifications.

[4] FlowPorts may only be connected if their required and provided flow specifications are compatible.

[5] A FlowPort must only be connected to another FlowPort.

Semantics

FlowPorts are distinct from Service Ports in that they specify an interaction point for the flow of properties, as opposed to
signals or operation calls, between the owning Block and its environment. By virtue of the fact that they extend UML
Ports they share the same dynamic semantics. That is to say that the dynamic behavior of the FlowPort is to simply
forward signals or method calls arriving at the port along the connectors connected to the port.

Notation

A FlowPort is shown following the notation for UML ports with a small arrow extending from one side of the small
square symbol to the opposite side. If the flow port has only provided flow specifications, the arrow head is shown on the
inner side parallel to the side of the block symbol the port is attached to. If the flow port has only required flow
specifications, the arrow head is shown on the outer side. Otherwise, arrow heads are shown on both sides, indicating that
a bidirectional flow is possible across this port.

Figure 8-4 shows that the block Transmission has a FlowPort p1 over which only inbound items will flow, i.e., p1 has
only provided FlowSpecifications. The items that may flow across this port are defined by the FlowSpecification iTorque.

Figure 8-4. FlowPort notation.

<<block>>
Transmission

p1:iTorque
34 SysML Specification v. 1.0 alpha

8.4.1.3 FlowSpecification

Definition

A FlowSpecification defines the entities which may flow across a FlowPort.

Description

A FlowSpecification specifies the entities which may flow across a FlowPort. They are restricted UML interfaces whose
attributes are typed by a ValueType, a DataType or a Block.

Constraints

[1] All the properties of a given FlowSpecification are either inputs or outputs.

[2] The properties owned by a FlowSpecification must be typed by a ValueType, DataType or a Block.

Semantics

A FlowSpecification represents a contract that the block realizing the FlowSpecification must fulfill. For example, a provided
FlowSpecification states that the block or blocks that realize the FlowSpecification must accept the flow of material, energy of
information specified by the attributes of the FlowSpecification. Similarly, a required FlowSpecification states that the block
or blocks that realize the FlowSpecification must source the flow of material, energy or information specified by the attributes
of the FlowSpecification.

A FlowSpecification does not specify how the realizing Block sources, sinks or otherwise processes the material, energy
or information but merely what needs to be sourced, sunk by the realizing Block.

8.4.1.4 ServicePort

Definition

A ServicePort is a unique interaction point for software or service communications between a Block and its environment or
between a Block and its internal Parts.

Description

A ServicePort is a stereotype of Port and has the same semantics and notation. The name has been changed to
differentiate software and service Ports from FlowPorts.

Constraints

[1] A ServicePort must only be connected to another ServicePort.

8.4.2 Diagram extensions

8.4.2.1 Block Definition diagram

Description

A diagram type, indicated on the diagram frame by a diagram kind of “block definition” or the abbreviation “bd” (see Appen-
dix A “Diagrams”), is available to show block definitions and follows the graphical conventions of a UML class diagram
showing block, their properties and their relationships.
SysML Specification v. 1.0 alpha 35

8.4.2.2 Internal Block diagram

Description

A diagram type, indicated on the diagram frame by a diagram kind of “internal block” or the abbreviation “ibd” (see Appendix
A “Diagrams”), is available to show the internal structure of a block and follows the graphical conventions of a UML compos-
ite structure diagram showing internal structure (parts, ports and connectors) of the subject block.

8.5 Usage examples
The following diagrams illustrate how Blocks diagrams are used. A complete sample problem that includes Blocks diagram
can be found in Appendix B “Sample Problem”.

Figure 8-5 and Figure 8-6 show the use of service ports. The example defines a block Car that has two parts: ecu (an Engine-
ControlUnit) and trans (the Transmission). Figure 8-5 shows the definition of two interfaces: iTransCmd which defines the
commands that the transmission can receive, and iTransData which defines the telemetry data that the transmission sends. The
engine control unit ecu has a service port p1 which provides the iTransData interface and requires the iTransCmd interface to
function properly. The transmission has one service port p3 which provides the iTransCmd interface and requires the iTrans-
Data interface.

Figure 8-6 shows the internal structure of the Car as an internal block diagram. In this diagram the engine control unit ecu part
is connected via port p1 to the transmission trans part via port p3 through the connector CANbus. Provided and required inter-
faces on p1 are elided. In this structure, the behavior of the engine control unit ecu will send commands to the transmission,

Figure 8-5. Service Port definition.

«block»
Car

speed: Real
direction:Direction

«block»
EngineControlUnit

p1

speed:Real
direction:Direction

«block»
Transmission

p3

iTransData

iTransCmd

iTransCmd

iTransData

ecu trans

«signal» TransCmd_regenBrake()
«signal» TransCmd_Dir(direction:Direction)
«signal» TransCmd_getSpeed()

«Interface»
iTransCmd

«signal» TransData(speed:Real)

«Interface»
iTransData
36 SysML Specification v. 1.0 alpha

which will receive these commands on the p3 port. The behavior of the transmission will respond appropriately to the com-
mands received, and will send a signal representing the current speed back to the engine control unit.

Figure 8-7 and Figure 8-8 show the use of FlowPorts. This example defines a Car block that has three parts: the engine eng, the
transmission trans, and the differential diff. Figure 8-7 also defines the physical quantity Torque and a FlowSpecification
iTorque which carries the sole item Torque (the quantity Torque is a user defined ValueType with unit Newton Meters and
dimension ML2/T2. See Chapter 18, “Auxiliary Constructs” for the definition of ValueType itself and the definition of Torque.
Appendix D also contains a list of pre-defined ValueTypes.). The Engine has a flow port p1 with required flow specification
iTorque. The Transmission has two ports p1 and p2, the former having the provided flow specification iTorque while the latter
has iTorque as the required flow specification. The Differential has one flow port p1 with provided flow specification iTorque..

Figure 8-8 shows the internal structure of the Car as internal block diagram. In this structure, the engine eng part is connected
via FlowPort p1 to the transmission trans part via its FlowPort p1 through the connector shaft1. The transmission part is in
turn connected via FlowPort p2 to the p1 port of the differential diff part through connector shaft2. This structure specifies that
the engine can transmit torque via p1, which will be carried via shaft1 to the transmission port p1. The transmission can accept

Figure 8-6. Service Port usage.

Figure 8-7. Flow Port definition.

block Car

«part»
ecu:EngineControlUnit

«part»
trans:Transmission

p1 p3

iTransCmd

iTransData

CANBus

t:Torque

«flowSpecification»
iTorque

«block»
Car

Produce_Torque()

tout:Torque

«block»
Engine

Amplify_Torque()

tin:Torque
tout:Torque

«block»
Transmission

Split_Torque

tin:Torque

«block»
Differential

p1:iTorque

iTorque

p1:iTorque

iTorque
difftranseng

p1 p2
SysML Specification v. 1.0 alpha 37

this torque via p1 and, as a result of the behavior allocated to the transmission, amplify and re-transmit the amplified torque to
the differential port p1 via p2 and shaft 2.

Figure 8-8. Flow Port usage.

block Car

«part»
eng:Engine

«part»
trans:Transmission

«part»
diff:Differential
p1p2p1p1

shaft2shaft1
38 SysML Specification v. 1.0 alpha

9 Parametric Constraints
9.1 Overview
A parametric constraint specifies how a change to the value of one structural property of a system impacts the value of other
system structural properties. Usually the constrained properties express quantitative characteristics of a system, but parametric
models may also be used on non-quantitive properties. Parametric constraints are non-directional, so they have no notion of
causality. Parametric constraints are typically used in combination with block diagrams.

Parametric constraint diagrams complement block diagrams, and are typically used in conjuntion with them. The defini-
tion/usage dichotomy applies to parametric constraints just as it does to blocks. Consequently, there is a semantic and nota-
tional difference between parametric constraint definition and parametric constraint use, where the former emphasizes
specification and the latter emphasizes application. The main benefits of this separations of concerns is re-use and consis-
tency. By separating definition from usage, the same specification can be re-used in many different contexts and any updates
to the definition are reflected in all usages.

Parametric constraints are frequently used to specify performance and reliablity requirements during system analysis.
Since parametric constraints are frequently interrelated, they often form a network of constraints among a system’s structural
properties. Although SysML provides a concrete syntax for naming and visualizing parametric constraints, it does not define
or designate a particular language for expressing the constraint itself. Consequently, the constraint portion of a parametric con-
straint may be defined using a constraint language of the modeler’s choosing, including mathematical equations (e.g., Force =
mass * acceleration), logical rules (e.g., IF altitude GTE 60,000 meters THEN ...) and precise natural language (e.g., The
Pressure is proportional to Area.”). Model libraries can be used to specify reusable parametric constraints for generic and
specific purposes (e.g., Ohm’s law for the electrical engineering domain).

Parametric constraints can be used to support tradeoff analysis. A modeler can specify a parametric constraint that repre-
sents an evaluation function for assessing alternative solutions. The evaluation function produces one or more outputs that
represent a general measure of effectiveness. The evaluation function may include a weighting of utility functions associated
with various criteria used to evaluate the alternatives. These criteria may be associated with selected system performance, cost,
and physical properties. The corresponding properties from each alternative is put into the evaluation function to determine the
overall measure of effectiveness. These properties may have probability distributions associated with them that are also fed
into the evaluation function to compute a probabilistic or expected measure of goodness. An example that shows how paramet-
ric constraints can be used to support tradeoff analysis can be found in Appendix B, “Sample Problem” and Appendix C,
“Non-Normative Extensions”.

The following sections describe the abstract syntax, package structure, UML extensions, compliance levels and usage
examples for Parametric Constraints.
SysML Specification v. 1.0 alpha 39

9.2 Diagram elements.

Table 6. Graphical nodes for Parametric Constraints.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Parametric Constraint SysML::ParametricCon-
straints::ParametricConstraint

Advanced

Parametric Constraint
Use

SysML::ParametricCon-
straints::
ParametricConstraintUse

Advanced

Binding SysML::ParametricCon-
straints::Binding

Advanced

«parametric»
ParametricName

BlockName

«parametricUse»
Name:

ParametricName

parameterName

«binding» Path
40 SysML Specification v. 1.0 alpha

9.3 Package structure

9.4 UML extensions

9.4.1 Stereotypes

9.4.1.1 Binding

Definition

A Binding relationship is a dependency between a parameter role in a parametric constraint and a property or parameter role in
another parametric constraint. The value of the parameter role and the property are bound to be equivalent within the context
of the parametric constraint.

Figure 9-1. Package structure for Parametric Constraints.

Figure 9-2. Abstract syntax for Parametric Constraints.

UML::CompositeStructures::
Collaborations

SysML::ParametricConstraints

«import»

«metaclass»
UML::CompositeStructures::
Collaborations::Collaboration

«stereotype»
ParamtricConstraint

«metaclass»
UML::CompositeStructures::

Collaborations::CollaborationUse

«stereotype»
ParamtricConstraintUse

«metaclass»
UML::Classes::

Dependencies::Dependency

path:String

«stereotype»
Binding
SysML Specification v. 1.0 alpha 41

Description

A Binding is a stereotype of Dependency. As with other dependencies, the arrow direction points from the (client/source)
property (or parameter role in the case where one parametric constraint use is bound to another) to the (supplier/target)
parameter role if the parametric constraint. Parametric constraints define the contexts for bindings, and apply across levels of
the structural hierarchy. For those cases where binding includes also includes a path, the binding applies to the property that
can be reached by navigating the binding path.

• path: String [1]: A string resulting from the concatenation of a sequence of property names that
begins with the name of a property of the classifier typing the property at the cli-
ent end, and ends with the name of the represented property. Each name in the
concatenated string is the name of the role of the entity represented by the pre-
ceding name. Each property name in the sequence is separated by a single dot
(“.”). (For example, the name “Engine.SparkPlug.voltage” represents the prop-
erty named voltage of the part SparkPlug of the part Engine of the enclosing
block.)

Notation

A binding is shown as a dashed line between a collaboration use symbol and a property, or a collaboration use symbol and
another collaboration use symbol, adorned with the keyword «binding». The path is shown following the stereotype.

Presentation option

Symbols representing a hierarchically nested property may be shown within the outline of the symbol representing the outer-
most property. The dashed line representing the binding is drawn to that symbol, and the path is shown within that symbol. See
Figure 9-5 for an example of this presentation option.

9.4.1.2 ParametricConstraint

Definition

A Parametric Constraint defines how the values of one or more Block properties are restricted.

Description

The ParametricConstraint is a stereotyped collaboration that restricts the values of one or more Block properties. A parametric
constraint definition may contain other parametric constraints to define a constraint as a composition of other constraints, as
well as other properties that may define the internal state of the parametric constraint (such as constants used in defining this
constraint). A parametric constraint definition does not specify any direction of causality by which the relation of its part val-
ues is established, but only specifies that a given relation is required to hold across its bound values. The specific relation that
a parametric constraint defines may be specified either by a UML constraint on the properties of the constraint definition, or by
informal specification in the documentation for the constraint. The roles of the parametric constraint definition are typically
parameters in the system of equations or rules that defines the constraint.

Notation

The specific relation that a parametric constraint defines between its properties is shown using UML constraint notation, either
in a compartment of the classifier symbol representing the ParametricConstraint, or with the internal structure of the con-
straint. A parametric constraint definition is shown by preceding the name with the keyword «parametric» and the dashed
ellipse symbol inherited from Collaboration.
42 SysML Specification v. 1.0 alpha

9.4.1.3 ParametricConstraintUse

Definition

A Parametric Constraint Use specifies how a Parametric Constraint is applied to restrict the values one or more Block proper-
ties.

Description

A ParametricConstraintUse is a stereotyped CollaborationUse in which the parameter roles are bound to system structural
properties. Once bound, the parametric constraint describes the relationship between the bound properties.

Constraint

[1] The type of a ParametricConstraintUse must be a ParametricConstraint.

Notation

A ParametricConstraintUse is shown by preceding the name with the keyword «parametricUse» and the dashed ellipse symbol
inherited from collaboration use. The binding of the parameter roles of a parametric constraint to a property in a block diagram
is shown by a dashed line from the symbol representing the occurrence of the parametric constraint use to the property. The
dashed line represents a dependency, as with a collaboration use, where the client end is the property and the supplier end is
the role of the parametric constraint that types the parametric constraint use. The dashed line is labeled on the client end with
the name of the supplier element (the role of the parametric constraint typing the parametric constraint use).

Two parametric constraint uses may make reference to the same parameter role. A dashed line between the two occurrences of
the respective parametric constraint uses, labeled on each end with the name of the supplier role, represents an implicit part
with an anonymous name and a type that is compatible with the supplier roles in the collaborations that type each parametric
constraint use identified by the labels. This implicit part is bound to the respective roles in each parametric constraint. For an
example, see Figure 9-5, where both Newton’s law and the HP2Force relation reference the same parameter role, force, that
represents the force exerted on the object.

9.4.2 Diagram extensions

9.4.2.1 Parametric diagram

Description

A diagram type, indicated on the diagram frame by a diagram kind of “parametric” or the abbreviation “par” (see Appendix A,
Diagrams), is available to show parametric constraints and follows the graphical conventions of a UML internal structure dia-
gram showing a collaboration.

9.5 Usage examples
The following diagrams illustrate how Parametric Constraint diagrams are used. A complete sample problem that includes
Parametric Constraint diagrams can be found in Appendix B, “Sample Problem”.

Figure 9-3 and Figure 9-4 shows two parametric constraints that are used in subsequent examples. The parametric constraint in
Figure 9-3 shows three parameter roles (force, mass, and acceleration) that are parts of the internal structure of the parametric
constraint. A constraint, demarcated by set braces, relates these three parameter roles. Alternatively, in Figure 9-4 the three
SysML Specification v. 1.0 alpha 43

parameter roles (force, hp, and k1) are attributes of a collaboration, and the constraint relating these parameter roles is shown
in a special compartment.

Figure 9-4. Parametric constraint definition using collaboration notation.

Parametric constraint uses are typically shown on a parametric block diagram or an internal block diagram, where they are
shown with other aspects of the block specification. Figure 9-5 shows an internal block diagram for the HybridSUV block from
Appendix B (the external block diagram for the HybridSVU is shown in Figure B-16). In this diagram we see several proper-
ties of the HybridSUV: the electric motor em, the internal combustion engine ice, mass, and acceleration. Using the presenta-
tion option discussed in Section 9.4.1.1 to show nested properties in a compartment of the symbol representing the outermost
property, the maxHp property of em and the displacement property of ice are shown as well. These properties are related by
parametric constraints maxHP (Sum2Real), disp2hp (Disp2HP), hp2force (HP2Force), and accel (Newton). For example,
accel relates the mass property of the HybridSUV to its acceleration and to a force. Similarly, the use of parametric constraint
HP2Force, hp2force relates a force, hp, and a constant k1, as shown in Figure 9-4. Note that the same force appears in both

Figure 9-3. Parametric constraint definition using internal structure notation.

«parametric»
Newton

mass: Real

force: Real

acceleration:
Real

{force = mass * acceleration}
44 SysML Specification v. 1.0 alpha

Newton and HP2Force and is represented using a parameter role binding connecting the two uses of these parametric con-
straints.

Figure 9-5. Parametric constraints on a Block diagram.

Internal Block Diagram: HybridSUV

mass

{total=role1+role2}

{hp=k3*displacement}

«parametricUse»
maxHP: Sum2Real

«parametricUse»
disp2hp: Disp2HP

«parametricUse»
hp2force:HP2Force

«parametricUse»
accel:Newton

acceleration

em: ElectricMotor

maxHP

ice: InternalCombustionEngine

displacement displacement

«binding»

role1
 «binding»

hp
role2

«binding»

acceleration

«binding»

mass
«binding»

force

force«binding»

hp

total

«binding»
SysML Specification v. 1.0 alpha 45

Figure 9-6 shows a more complex example of a parametric constraint. Here all constraints of the previous example are cap-
tured in a single parametric constraint AccelerationRelations. In a use of this constraint, the four roles hp, mass, displacement,
and acceleration have to be bound to properties within the structure where the constraint is applied.

See Sample Problems B.4.2 and B.4.14 for other examples of parametric constraints.

Figure 9-6. Parametric constraints on a Parametric diagram.

«parametric»
AccelerationRelations

mass

«parametricUse»
maxHP:Sum2Real

«parametricUse»

disp2hp:Disp2HP

«parametricUse»
hp2force:HP2Force

«parametricUse»
accel:Newton

acceleration

hp

displacement

displacement

«binding»

role1
«binding»

hprole2
«binding»

acceleration

«binding»

mass «binding»

force
force

«binding»

hp

total

«binding»
46 SysML Specification v. 1.0 alpha

Part III - Behavioral Constructs
This Part specifies the dynamic, behavioral constructs used in SysML behavioral diagrams, such as Activity diagrams,
Sequence diagrams, and State Machine diagrams. The Activity represents the basic unit of behavior that is used in all behav-
ioral diagrams. An activity is a behavior that is composed of actions, some of which may invoke other activities. The State
Machine diagram includes activities that are invoked during transition between states, upon entry or exit from a state, or while
in a state. The Sequence diagram includes activities as methods of operations that are invoked by messages. Use Case dia-
grams, which specify system usages and are both behavioral and structural, are also defined in this Part.
SysML Specification v. 1.0 alpha 47

48 SysML Specification v. 1.0 alpha

10 Activities

10.1 Overview
Activities specify sequential and concurrent behaviors that are connected by control flows and object flows. Activities can be
nested or atomic; in the latter case they are referrred to as actions. Activity diagrams are used to specify the functional behav-
ior of a system, and are analogous to Extended Functional Flow Block Diagrams (EFFBDs). See Appendix C, “Non-Norma-
tive Extensions” for a non-normative mapping of Activity notation to EFFBD notation.

The following sections describe how SysML extends UML Activity diagrams to support system engineering applications:

Control as data

In UML activities controls can only enable actions to start. In SysML controls can also disable actions that are already execut-
ing via Control Values. SysML also provides Control Operators to control other actions.

Continuous systems

SysML provides extensions for continuous behaviors that are generally applicable to any sort of distributed flow of informa-
tion and physical items through a system. These extensions include:

• In UML modelers can only specify discrete flows of information. SysML allows modelers to specify both continuous
and discrete flows, where the flows can be involve matter and energy as well as information. SysML also allows mod-
elers to define the rate at which entities flow. Discrete and continuous flows are unified under the rate of flow, as is tra-
ditionall for mathematical models of continuous change.

• SysML extends object nodes, including pins, with the option for newly arriving values to replace values that are
already in the object nodes. It also extends object nodes with the option to discard values if they do not immediately
flow downstream. These extensions are useful for ensuring that the most recent information is available to actions by
indicating when old values should not be kept in object nodes, and for preventing fast or continuously flowing values
from collecting in an object node, as well as modeling transient values (e.g., electrical signals).

Probability assignment

SysML allows modelers to assign expressions to flows that evaluate to probabilities for the likelihood that a value leaving a
decision node or object node will traverse a flow. SysML also extends output parameter sets with probabilities for the likeli-
hood that values will be output on a parameter set.

Activities as Blocks

In UML activities and all other behaviors are classes and their instances are executions. Consequently, in UML all behaviors
can appear on class diagrams and participate in generalization and association relationships. Since SyML Block Defintion dia-
grams are analogous to UML Class diagrams, SysML extends Block Defintion diagram notation to include activities, clarifies
the semantics of composition associations, and defines consistency rules between Activity diagrams and Block diagrams.

The following sections describe the abstract syntax, package structure, UML extensions, compliance levels and usage
examples for Activities.
SysML Specification v. 1.0 alpha 49

10.2 Diagram elements
This section describes the concrete syntax for graphical nodes and paths in Activity diagrams..

Table 7. Graphical nodes for Activities.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

AcceptEventAction UML::Actions::CompeleteAc-
tions

Basic

Action UML::Activities::CompeleteAc-
tivities::Action

Basic

ActivityFinal UML::Activities::Intermediate-
Activities::ActivityFinalNode

Basic

ActivityNode See ExecutableNode, ControlNode, and
ObjectNode.

UML::Activities::CompleteAc-
tivities::ActivityNode

Basic

ControlNode See DecisionNode, FinalNode, ForkNode,
InitialNode, JoinNode, and MergeNode.

UML::Activities::BasicActivi-
ties::ControlNode

Basic

ControlOperator SysML::«controlOperator» Advanced

DecisionNode UML::Activities::Intermediate-
Activities::DecisionNode

Basic

FinalNode See ActivityFinal and FlowFinal. UML::Activities::Intermediate-
Activities::FinalNode

Basic

FlowFinal UML::Activities::Intermediate-
Activities::FlowFinalNode

Advanced

ForkNode UML::Activities::Intermediate-
Activities::ForkNode

Basic

«controlOperator»
Function

...
...
50 SysML Specification v. 1.0 alpha

InitialNode UML::Activities::BasicActivi-
ties::InitialNode

Basic

JoinNode UML::Activities::CompleteAc-
tivities::JoinNode

Basic

MergeNode UML::Activities::Intermediate-
Activities::MergeNode

Basic

ObjectNode UML::Activities::CompleteAc-
tivities::OjectNode and its chil-
dren.

Basic

SendSignalEvent UML::Actions::BasicActions

Table 7. Graphical nodes for Activities.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

...
...
SysML Specification v. 1.0 alpha 51

Table 8. Graphical paths for Activities.

PATH NAME CONCRETE SYNTAX
ABSTRACT SYNTAX

REFERENCE
COMPLIANCE

Rate SysML::«rate»,
SysML::«continuous»,
SysML::«discrete»

Advanced

Rate { rate = constant }
{ rate = distribution }

SysML::«rate» Advanced

OverWrite SysML::«overwrite» Advanced

NoBuffer SysML::«noBuffer» Advanced

{ rate = constant }
{ rate = distribution }

«discrete»
Object Node

«continuous»

«continuous»
Object Node

«discrete»

{ rate = constant }
{ rate = distribution }

Object Node

Object Node

«rate»
rate = constant

rate = distribution

«overwrite»
Function

«overwrite»

«overwrite»
Object Node

«noBuffer»
Object Node

«noBuffer»
Function

«noBuffer»
52 SysML Specification v. 1.0 alpha

Probability SysML::«probability» Advanced

Optional SysML::«optional» Basic

isControl UML::Activities::Com-
pleteActivi-
ties::Pin.isControl

Advanced

isStream UML::Activities::Com-
pleteActivities::Param-
eter.isStream

Advanced

ActivityEdge See ControlFlow and ObjectFlow. UML::Activities::Com-
pleteActivities::Activi-
tyEdge

Basic

ControlFlow UML::Activities::
BasicActivities::
ControlFlow

SysML::ControlFlow

Basic

Table 8. Graphical paths for Activities.

PATH NAME CONCRETE SYNTAX
ABSTRACT SYNTAX

REFERENCE
COMPLIANCE

Function

{ probability =
valueSpecification }

{ probability =
valueSpecification }

«optional»
Function

«optional»

{ control }
Function

{ control }

{ stream }
Function

{ stream }
SysML Specification v. 1.0 alpha 53

ObjectFlow UML::Activities::Com-
pleteActivities::Object-
Flow and its children.

Basic

Table 9. Other graphical elements included in Activity diagrams.

ELEMENT NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Activity, ObejctNode,
Association on Block
Diagram

SysML::Activity,
SysML:ObjectNode

Advanced

Activity UML::Activities::CompleteAc-
tivities::Activity

Basic

ActivityPartition UML::Activities::
IntermediateActivities::
ActivityPartition

Basic

Table 8. Graphical paths for Activities.

PATH NAME CONCRETE SYNTAX
ABSTRACT SYNTAX

REFERENCE
COMPLIANCE

«activity»
activity name

action
name

«activity»
activity name

«activity»
activity name

object
node
name

«block»
block name

Activity name

...
...

...

Parameter name: type

Pa
rti

tio
n

N
am

e

invocation
(Partition Name)
54 SysML Specification v. 1.0 alpha

InterruptibleActivity-
Region

UML:Activities::
CompleteActivities::
InterruptibleActivityRegion

Advanced

Local pre- and post-
conditions.

UML:Activities::
CompleteActivities::Action

Advanced

ParameterSet UML::Activities::
CompleteActivities::
ParameterSet

Advanced

Table 9. Other graphical elements included in Activity diagrams.

ELEMENT NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

«localPrecondition»
constraint

name

«localPostcondition»
constraint
SysML Specification v. 1.0 alpha 55

10.3 Package structure
The package structure for SysML Activities is shown in Figure 10-1. .

Figure 10-1. Package structure for Activities.

UML::CompleteActivities

SysML::Activities

«import»
56 SysML Specification v. 1.0 alpha

10.4 UML extensions
This section describes the UML stereotypes and diagram extensions required to define SysML Activity diagrams..

10.4.1 Stereotypes

10.4.1.1 Continuous

This is a kind of Rate stereotype representing a rate of flow for items treated as infintesimals (e.g., water flowing a pipe) or
entities sufficiently small enough to treat as continuously flowing (e.g., ball bearings in a factory). It is independent from
UML streaming (see “Rate”). A streaming parameter may result in continuous flows or not, and a continuous flow may
involve streaming parameters or not.

Figure 10-2. Abstract syntax for Activities.

«metaclass»
UML::ParameterSet

«metaclass»
UML::ActivityEdge

 rate: Quantity

«stereotype»
Rate

Probability: UML::ValueSpecification

«stereotype»
Probability

«metaclass»
UML::Parameter

«stereotype»
Optional

«stereotype»
Continuous

«stereotype»
Discrete

«metaclass»
UML::Operation

«metaclass»
UML::Behavior

«stereotype»
ConrolOperator

«metaclass»
UML::ObjectNode

«stereotype»
NoBuffer

«stereotype»
Overwrite
SysML Specification v. 1.0 alpha 57

UML places no restriction on the rate at which tokens flow. In particular, the time between tokens can approach as close
to zero as needed, for example to simulate continuous flow. There is also no restriction in UML on the kinds of values that
flow through an activity. In particular, the value may represent as small a number as needed, for example to simulate continu-
ous material or energy flow. Finally, the exact timing of token flow is not completely prescribed in UML. In particular, token
flow on different edges may be coordinated to occur in a clocked fashion, as in time march algorithms for numerical solvers of
ordinary differential equations, such as Runge-Kutta.

Constraints

[1] The «nobuffer» stereotype always applies to object nodes that have an incoming edge stereotyped by «continuous».

10.4.1.2 ControlValue (a predefined enumeration)

Description

The ControlValue enumeration is a type available for modelers to apply when control is to be treated as data (see section
10.4.1.3) and for UML control pins. It can be used for behavior and operation parameters, object nodes, and attributes, and so
on. The ControlValue enumeration is defined in Chapter 17, “Types” and subclassed in Appendix C, “Non-Normative Exten-
sions” to provide a set of default enumeration literals. Modelers can extend the enumeration with additional literals, such as
suspend, resume, with their own semantics. See Appendix D for customizing the enumeration literals.

Constraints
1. UML::ObjectNode::isControlType is true for object nodes with type ControlValue.

10.4.1.3 ControlOperator

Description

When the «controlOperator» stereotype is applied to behaviors, the behavior takes control values as inputs or provides them
as outputs, that is, it treats control as data. The control values do not enable or disable the control operator execution based on
their value, they only enable based on their presence as data. Pins for control parameters are regular pins, not UML control
pins. This is so the control value is passed into or out of the action and the invoked behavior, rather than control the starting of
the action, or indicating the ending of it. When the «controlOperator» stereotype is not applied, the behavior may not have a
parameter typed by ControlValue. The «controlOperator» stereotype also applies to operations, with the same semantics.

Constraints

[1] When the «controlOperator» stereotype is applied, the behavior or operation must have at least one parameter typed by
ControlValue. If the stereotype is not applied, the behavior or operation may not have any parameter typed by Con-
trolValue.

[2] A method behavior must have the «controlOperator» stereotype applied if its operation does.

10.4.1.4 Discrete

This is a kind of Rate stereotype representing a rate of flow for items treated as individuals for the purpose of the application,
for example, cars in a car factory.

Constraints

[1] The «discrete» and «continuous» stereotypes cannot be applied to the same element at the same time.
58 SysML Specification v. 1.0 alpha

10.4.1.5 NoBuffer

Description

When the «nobuffer» stereotype is applied to object nodes, tokens arriving at the node that are refused by outgoing edges, or
refused by actions for object nodes that are input pins, are discarded. This is typically used with fast or continuously flowing
data values, to prevent buffer overrun, or to model transient values, such as electrical signals. For object nodes that are the tar-
get of continuous flows, «nobuffer» and «overwrite» have the same effect. When the stereotype is not applied, the semantics
is as in UML, specifically, tokens arriving at an object node that are refused by outgoing edges, or action for input pins, are
held until they can leave the object node.

Constraints

[1] The «nobuffer» and «overwrite» stereotypes cannot be applied to the same element at the same time.

10.4.1.6 Overwrite

Description

When the «overwrite» stereotype is applied to object nodes, a token arriving at a full object node replaces the ones already
there (a full object node has as many tokens as allowed by its upper bound). This is typically used on an input pin with an
upper bound of 1 to ensure that stale data is overridden at an input pin. For upper bounds greater than one, the token replaced
is nondeterministic. A null token removes all the tokens already there. The number of tokens replaced is equal to the weight of
the incoming edge, which defaults to 1. For object nodes that are the target of continuous flows, «overwrite» and «nobuffer»
have the same effect. When the stereotype is not applied, the semantics is as in UML, specifically, tokens arriving at object
nodes do not replace ones that are already there.

Constraints

[1] The «overwrite» and «nobuffer» stereotypes cannot be applied to the same element at the same time.

10.4.1.7 Optional

Description

When the «optional» stereotype is applied to parameters, the lower multiplicity must be equal to zero. Otherwise, the lower
multiplicity must be greater than zero, which is called “required”.

Constraints

[1] A parameter with the «optional» stereotypes applied must have multiplicity.lower equal to zero, otherwise multiplic-
ity.lower must be greater than zero.

10.4.1.8 Probability

Description

When the «probability» stereotype is applied to edges coming out of decision nodes and object nodes, it provides an expres-
sion for the probability that the edge will be traversed. These must be between zero and one inclusive, and add up to one for
edges with same source at the time the probabilities are used.

When the «probability» stereotype is applied to output parameter sets, it gives the probability the parameter set will be given
values at runtime. These must be between zero and one inclusive, and add up to one for output parameter sets of the same
behavior at the time the probabilities are used.
SysML Specification v. 1.0 alpha 59

Constraints

[1] The «probability» stereotype can only be applied to activity edges that have decision nodes or object nodes as sources, or
to output parameter sets.

[2] When the «probability» stereotype is applied to an activity edge, then it must be applied to all edges coming out of the
same source.

[3] When the «probability» stereotype is applied to an output parameter set, it must be applied to all the parameter sets of the
behavior or operation owning the original parameter set, and all the output parameters must be in some parameter set.

10.4.1.9 Rate

Description

When the «rate» stereotype is applied to an activity edge, it specifies the rate over time that objects and values traverse the
edge, that is, the rate they leave the source node and arrive at the target. It does not refer to the rate at which a value changes
over time. When the stereotype is applied to a parameter, the parameter must be streaming, and the stereotype gives the rate
over time that objects or values are expected to flow in or out of the parameter while the behavior or operation is executing.
Streaming is a characteristic of UML behavior parameters that supports the input and output of items while a behavior is exe-
cuting, rather than only when the behavior starts and stops. The flow may be continuous or discrete, see the specialized rates
in section 10.4.1.1, and section 10.4.1.4. The quantity must have units and dimensions appropriate to rates of flow.

Constraints
[1] When the «rate» stereotype is applied to parameter, the parameter must be streaming.

[2] The denominator for units used in the rate property must be time units.

[3] Rates on edges that come from or go to streaming parameters must be more than or equal to the rate of the parameters.

10.4.2 Diagram extensions

The entries below give notational extensions for some UML elements.

10.4.2.1 Activity

Notation

In UML 2, all behaviors are classes, including activities, and their instances are executions of the activity. This follows the
general practice that classes define the constraints under which the instances must operate. Creating an instance of an activity
causes the activity to start executing, and vice versa. Destroying an instance of an activity terminates the corresponding exe-
cution, and vice versa. Terminating an execution also terminates the execution of any other activities that it invoked synchro-
nously, that is, expecting a reply.

Activities as classes can have associations between each other, including strong composition associations. Strong compo-
sition means that destroying an instance at the whole end destroys instances at the part end. When strong composition is used
with activity classes, the termination of execution of an activity on the whole end will terminate executions of activities on the
part end of the links.

Combining the two aspects above, when an activity invokes other activities, they can can be associated by a strong com-
position association, with the invoking activity on the whole end, and the invoked activity on the part end. If an execution of
an activity on the whole end is terminated, then the executions of the activities on the part end are also terminated. The upper
multiplicity on the part end restricts the number of concurrent synchronous executions of the behavior that can be invoked by
the containing activity. The lower multiplicity on the part end is always zero, because there will be some time during the exe-
cution of the containing activity that the lower level activity is not executing. See Constraints, below.
60 SysML Specification v. 1.0 alpha

Activities in class diagrams appear as regular classes, using the «activity» keyword for clarity, as shown in Figure 10-3.
See example in section 10.5. The names of the CallBehaviorActions that correspond to the association can be used as end
names of the association on the part end. Activities in class diagrams can also appear with the same notation as CallBehavior-
Action, except the rake notation can be omitted, if desired. Also see use of activities in class diagrams at ObjectNode.

CallBehaviorActions in activity diagrams can optionally show the action name with the name of the invoked behavior using
the colon notation shown in Figure Figure 10-4.

Constraints

The following constraints apply when composite associations in class diagrams are defined between activities:

[1] The part end name must be the same as the name of a synchronous CallBehaviorAction in the composite activity. If the
action has no name, and the invoked activity is only used once in the calling activity, then the end name is the same as
name of the invoked activity.

[2] The part end activity must be the same as the activity invoked by the corresponding CallBehaviorAction.

[3] The lower multiplicity at the part end must be zero.

[4] The upper multiplicity at the part end must be 1 if the corresponding action invokes a nonreentrant behavior.

10.4.2.2 ControlFlow

Presentation Option

Control flow may be notated with a dashed line and stick arrowhead.

Figure 10-3. Class diagram with activities as classes.

Figure 10-4. CallBehaviorAction notation.in activty diagram

action
name

action
name

action
name

«activity»
activity name

«activity»
activity name

«activity»
activity name

«activity»
activity name

action
name

«activity»
activity name

action name : behavior name
SysML Specification v. 1.0 alpha 61

10.4.2.3 ObjectNode

Notation

See Section 10.4.2.1 concerning activities appearing in class diagrams. Associations can be used between activities and
classes that are the type of object nodes in the activity, as shown in Figure 10-5. This supports linking the execution of the
activity with items that are flowing through the activity and happen to be contained by the object node at the time the link
exists. The names of the object node that correspond to the association can be used as end names of the association on the end
towards the object node type. The upper multiplicity on the object node end restricts the number of instances of the item type
can can reside in the object node at one time, which must be lower than the maximum amount allowed by the object node
itself.. The lower multiplicity on the object node end is always zero, because there will be some time during the execution of
the containing activity that there is no item in the object node. The associations may be composite if the intention is to delete
instances of the class flowing the activity when the activity is terminated. See example in Section 10.5 .

Object nodes in activity diagrams can optionally show the node name with the name of the type of the object node as shown in
Figure 10-6.

Figure 10-5. Class diagram with activities as blocks associated with types of object nodes.

Figure 10-6. ObjectNode notation in activity diagrams.

object
node
name

object
node
name

object
node
name

«activity»
activity name

«activity»
activity name

object
node
name

«class»
class name

«class»
class name

«class»
class name

object node name : class name
62 SysML Specification v. 1.0 alpha

Stereotypes applying to parameters can appear on object nodes in activity diagrams, as shown in Figure 10-7, when the object
node notation is used as a shorthand for pins. The stereotype applies to all parameters corresponding to the pins notated by the
object node.

Constraints

The following constraints apply when associations in class diagrams are defined between activities and classes typing object
nodes:

[1] The end name towards the object node type is the same as the name of an object node in the activity at the other end.

[2] The class must be the same as the type of the corresponding object node.

[3] The lower multiplicity at the object node type end must be zero.

[4] The upper multiplicity at the object node type end must be equal to the upper bound of the corresponding object node.

10.5 Usage examples
The following diagrams illustrate how Activity diagrams are used. A complete sample problem that includes Activity dia-
grams can be found in Appendix B, “Sample Problem”.

Figure 10-8 through Figure 10-9 shows the Activity Diagram for the ControlPower Activity scenario also shown in Figure 11-
3. These diagrams are fully elaborated, including partitions (commonly called “swimlanes”) to illustrate the allocation of
behavior to structure. The initial versions of these diagrams may not have partitions, but may instead focus on behavior alone.
Once the equipment breakdown structure is defined, partitions may be added or explicit allocations can be performed. See
Chapter 15, “Allocations”.

Note that many of the elements displayed on these diagrams are representations of the same model element shown on
other diagrams. for example the ApplyAccelerator SendSignalAction is the same underlying model element as the message
ApplyAccelerator on Figure B-12 and Figure B-13.

The circles with letters inside represent off page connectors used to connect flows across pages of large diagrams.

Figure 10-7. ObjectNode notation in activity diagrams.

«stereotype name»

object node name

«stereotype name»

object node name
«stereotype name»

object node name
SysML Specification v. 1.0 alpha 63

Figure 10-8. Activity Diagram Example: Control Power (1 of 4)

Activity Diagram: Control Power (1 of 4)

Driver EngineControlUnit InternalCombustionEngine ElectricMotor Transmission

ApplyAccelerator(angle) Calc Desire vel

A

TransCmd_getSpeed()

Calc Reg RPM

Cur_vel

TransData(Cur_vel)

Meas Current vel

D

[Cur_vel > 50.0]

C
[10.0<Cur_vel<= 50.0]

B
[Cur_vel<=10.0]
64 SysML Specification v. 1.0 alpha

Figure 10-9. Activity Diagram Example: Control Power (2 of 4)

Activity Diagram: Control Power (2 of 4)

EngineControlUnit ElectricMotor Transmission FrontWheelAxel FrontWheel FrontWheel

lac :ACCurrent

B

EMCmd_RPM
(des_rpm, cur_rpm) Prod_Torque

A

ldc:DCCurrent

Amplify_Torque

Split_Torque

Provide_Traction

Provide_Traction

t:Torque

t:Torque

«continuous»

t:Torque

t:Torque

«continuous» t:Torque

t:Torque t:Torque

t:Torque

«continuous»

«continuous»

«continuous»
SysML Specification v. 1.0 alpha 65

Figure 10-10. Activity Diagram Example: Control Power (3 of 4)

Activity Diagram: Control Power (3 of 4)

EngineControlUnit InternalCombustionEngine Transmission FrontWheelAxel FrontWheel FrontWheel

fuel :Fuel

C

ICECmd_RPM
(des_rpm, cur_rpm) Prod Torque

A

fuel: Fuel

«continuous»

t:Torque

«continuous»

Amplify_Torque

Split_Torque

Provide_Traction

Provide_Traction

t:Torque

t:Torque

t:Torque

«continuous» t:Torque

t:Torque t:Torque

t:Torque

«continuous»

«continuous»
66 SysML Specification v. 1.0 alpha

Figure 10-11. Activity Diagram Example: Control Power (4 of 4)

Activity Diagram: Control Power (4 of 4)

EngineControlUnit ElectricMotor Transmission FrontWheelAxel FrontWheel FrontWheel

lac :ACCurrent

«continuous»

EMCmd_RPM
(des_rpm, cur_rpm)

Prod_Torque

ldc:DCCurent

InternalCombustionEngine

fuel: Fuel «continuous»

Prod_Torque

fuel: Fuel

ICECmd_RPM
(des_rpm, cur_rpm)

A

D

t1:Torque

t2: Torque

«continuous»

«continuous»

Combine_Torque
t2:Torque

t1:Torque

t:Torque

Amplify_Torque

Split_Torque

Provide_Traction

Provide_Traction

t:Torque

t:Torque

«continuous» t:Torque

t:Torque t:Torque

t:Torque

«continuous»

«continuous»

t:Torque

«continuous»
SysML Specification v. 1.0 alpha 67

The following examples illustrate modeling continuous systems. Figure 10-12 shows a simplified model of driving and brak-
ing in a car that has an automatic braking system. Turning the key on starts two behaviors, Driving and Braking, which are the
responsibility of the Driver and Brake System respectively. These behaviors execute until the key is turned off, using stream-
ing parameters to communicate with other functions. The Driving behavior outputs a brake pressure continuously to the Brak-
ing behavior while both are executing, as indicated by the «continuous» rate and streaming properties (streaming is a
characteristic of UML behavior parameters that supports the input and output of items while a behavior is executing, rather
than only when the behavior starts and stops). Brake pressure information also flows to a control operator that outputs a con-
trol value to enable or disable the Monitor Traction behavior. No control pins are used on Monitor Traction, so once it is
enabled, the continuously arriving enable control values from the control operator have no effect, per UML semantics. When
the brake pressure goes to zero, disable control values are emitted from the control operator. The first one disables the moni-
tor, and the rest have no effect. While the monitor is enabled, it outputs a modulation frequency for applying the brakes as
determined by the ABS system. The rake notations on the control operator and Monitor Traction indicate they are further
defined by activities, as shown in Figure 10-13 and Figure 10-14.

The activity diagram for Monitor Traction is shown in Figure 10-13. When Monitor Traction is enabled, it begins listening for
signals coming in from the wheel and accelerometer, as indicated by the signal receipt symbols on the left, which begin listen-
ing automatically when the activity is. A traction index is calculated every 10 ms, which is the slower of the two signal rates.
The accelerometer signals come in continuously, which means the input to Calculate Traction does not buffer values. The

Figure 10-12. Continuous system example 1.

«interruptibleRegion»

Driving

Braking

Monitor Traction

{stream }

{stream }

Turn
Key To On

Key
off

Brake
Pressure

«continuous»
Modulation
Frequency

«controlOperator»
Enable on Brake

Pressure > 0

Operate Car

«continuous»

«interruptibleRegion»

Driving

Braking

Monitor Traction

{stream }

{stream }

Turn
Key To On

Key
off

Brake
Pressure

«continuous»
Modulation
Frequency

«controlOperator»
Enable on Brake

Pressure > 0

Operate Car

«continuous»
68 SysML Specification v. 1.0 alpha

result of Calculate Traction is filtered by a decision node for a threshold value and Calculate Modulation Frequency deter-
mines the output of the activity.

The activity diagram for the control operator Enable on Brake Pressure > 0 is shown in Figure 10-14. The decision node and
guards determine if the brake pressure is greater than zero, and flow is directed to value specification actions that output an
enabling or disabling control value from the activity. The edges coming out of the decision node indicate the probability of
each branch being taken.

Figure 10-13. Continuous system example 2.

Figure 10-14. Continuous system example 3.

Monitor Traction
[loss of
 of traction]

Acceleration

Input from
optical
sensor
on wheel

Angular Velocity

Calculate Traction

[else]

Calculate
Modulation
Frequency

{rate = per 10ms}

«continuous»

Modulation
Frequency

{stream}

Traction
Index

Input from
accelerometer

Monitor Traction
[loss of
 of traction]

Acceleration

Input from
optical
sensor
on wheel

Angular Velocity

Calculate Traction

[else]

Calculate
Modulation
Frequency

{rate = per 10ms}

«continuous»

Modulation
Frequency

{stream}

Traction
Index

Input from
accelerometer

Monitor Traction
[loss of
 of traction]

Acceleration

Input from
optical
sensor
on wheel

Angular Velocity

Calculate Traction

[else]

Calculate
Modulation
Frequency

{rate = per 10ms}

«continuous»

Modulation
Frequency

{stream}

Traction
Index

Input from
accelerometer

Enable on Brake Pressure > 0
«controlOperator»

Brake
Pressure

ControlValue

[Brake Pressure > 0]

«ValueSpecificationAction»
enable

«ValueSpecificationAction»
disable[else]

{probability = 90%}

{probability = 10%}
SysML Specification v. 1.0 alpha 69

70 SysML Specification v. 1.0 alpha

11 Sequences

11.1 Overview
The Sequences package defines a set of constructs for modeling communnications among block structures arranged in time
order. A Sequence diagram specifies a series of interactions in terms of message flows. A message combines control and data-
flow. It initiates behavior in the object receiving the message and passes inputs to the behavior. The time ordering of the mes-
sages is associated with the vertical placement of the message on the diagram. Complex sequences can be decomposed into
interaction uses and combined fragments.. Conditional logic can be included to represent alternative flows, parallel flows, and
loops. Gates provide interaction points with external lifelines. Lifelines can be decomposed into their constituent parts.

The following sections describe the abstract syntax, package structure, UML extensions, compliance levels and usage
examples for Sequences.
SysML Specification v. 1.0 alpha 71

11.2 Diagram elements
The graphical nodes that can be included in Sequence diagrams are shown in Table 14.

Table 10 - Graphical nodes for Sequences.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Sequence Diagram
Frame

The notation shows a rectangular
frame around the diagram with a
name in a compartment in the
upper left corner. See “Interaction
(from BasicInteraction, Frag-
ments)” on page 419.

Basic

Lifeline UML::Interactions::Fragments Basic

ExecutionSpecification UML::Interactions::BasicInter-
actions

Basic

InteractionUse UML::Interactions::Fragments Basic

seq EventOccurrence

:Lifeline

ob2:C2 Ob3:C3

doIt

Nref
72 SysML Specification v. 1.0 alpha

CombinedFragment UML::Interactions::Fragments Basic

StateInvariant /
Continuation

UML::Interactions::
BasicInteractions

UML::Interactions::Fragments

Advanced

Coregion See explanation under parallel in
“CombinedFragment (from Frag-
ments)” on page 409

Advanced

DestructionEvent UML::Interactions::
BasicInteractions

Basic

Table 10 - Graphical nodes for Sequences.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

alt

:Y

p==15

s[u]:B

m3

m2
SysML Specification v. 1.0 alpha 73

The graphic paths between the graphic nodes are given in Table 15.

Duration Constraint
Duration Observation

UML::CommonBehaviors:
SimpleTime

Basic

Time Constraint
Time Observation

UML::CommonBehaviors:
SimpleTime

Basic

Table 11 - Graphic paths for Sequences.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Message UML::Interactions::
BasicInteractions

Basic

Lost Message UML::Interactions::
BasicInteractions

Advanced

Table 10 - Graphical nodes for Sequences.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

:User

Code d=duration

CardOut {0..13}

OK

{d..3*d}

CardOut {0..13}

OK
t=now

{t..t+3}

Code

doit(z)

lost
74 SysML Specification v. 1.0 alpha

11.3 Package structure

11.4 UML extensions
No UML extensions are defined for Sequence diagrams.

11.5 Usage examples
The following diagrams illustrate how Sequence diagrams are used. A complete sample problem that includes Sequence dia-
grams can be found in Appendix B, “Sample Problem”.

Figure 11-2 shows a “black-box” sequence diagram describing the “Drive Car” use case. The diagram is considered a
“black-box” diagram as it shows a single lifeline for the Hybrid SUV and does not show any internal parts. The diagram has

Found Message UML::Interactions::
BasicInteractions

Advanced

Figure 11-1. Package structure for Sequences.

Table 11 - Graphic paths for Sequences.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

found

UML::Interactions

SysML::Interactions

«import»
SysML Specification v. 1.0 alpha 75

interaction occurrences for each of the «included» use cases shown in Figure 13-2 of Chapter 13, “Use Cases”, and shows a
time ordering of executions (other time orderings are possible, i.e. this is a partial specification of behavior).

Figure 11-3 shows the details of the Accelerate interaction occurrence. When the :Driver presses the accelerator the
:HybridSUV receives the ApplyAccelerator message with a parameter: “angle”. In response to this event, the :HybridSUV
performs its ControlPower activity.

Figure 11-2. Top-level Sequence diagram for Drive Car

Sequence Diagram: Drive Car

«actor»
:Driver

«subject»
:HybridSUV

ref Accelerate

ref SelectGear

ref Brake

ref Steer

ref Start
76 SysML Specification v. 1.0 alpha

This is still a “black-box” view of the system, however the “ref: Accelerate Allocate” text on the :HybridSUV lifeline,
known as a part decomposition, indicates that a white-box (or allocated) view exists that shows the internal interactions of the
:HybridSUV for this scenario.

Figure 11-4 shows the “white-box” sequence diagram for the Accelerate scenario. The choice of Activity Diagrams,
Sequence Diagrams, or a combination of the two for defining scenarios is a matter of personal taste. Of course a diagram with
this level of detail cannot be created until candidate parts (units, subsystems, etc. of the equipment breakdown structure) have
been identified. See Section B.3.8 of Appendix B for the Block Definition diagram describing the blocks referenced in Figure
11-4.

Figure 11-3. Accelerate scenario

Sequence Diagram: Accelerate

«actor»
Driver

«subject»
HybridSUV ref ‘Accelerate Allocated’

ApplyAccelerator(angle)

ControlPower(fuel, lac);
SysML Specification v. 1.0 alpha 77

Figure 11-4. Acceleration with allocations

Sequence Diagram: Accelerate Allocated

«actor»
driver

«block»
ecu1 : EngineControlUnit

«block»
ice1 : InternalCombustionEngine

«block»
em1 : ElectricalMotor

«block»
t1 : Transmission

«block»
fwa : FrontWheelAxel

«block»
leftfw : FrontWheel

«block»
rightfw : FrontWheel

«block»
i1 : Inverter

«block»
bp1 :BatteryPack

«block»
ft1 : FuelTank

[10<speed <=50]

[Speed > 50]

 Alt [speed <=10]

ApplyAccelerator
(angle)

TransCmd_getSpeed()

TransData(speed)

EMCmd_RPM(des_rpm, cur_rpm)
Idc(idc)

Iac(iac)

Torque(torque)

Torque(torque)
Torque(torque)

Torque(torque)

ICECmd_RPM(des_rpm, cur_rpm)
Fuel(fuel)

Torque(torque)
Torque(torque)

Torque(torque)

Torque(torque)

EMCmd_RPM(des_rpm, cur_rpm)
Idc(idc)

Iac(iac)
Torque(torque)

Torque(torque)
Torque(torque)

Torque(torque)ICECmd_RPM(des_rpm, cur_rpm)
Fuel(fuel)

Torque(torque)
Torque(torque)

Torque(torque)

Torque(torque)
78 SysML Specification v. 1.0 alpha

SysML Specification v. 1.0 alpha 79

80 SysML Specification v. 1.0 alpha

12 State Machines

12.1 Overview
The StateMachine package defines a set of concepts for modeling discrete behavior through finite state transition systems. A
state machine represents behavior as the state history of an object in terms of its transitions and states. The activities that are
invoked during the transition, entry, and exit of the states are specified along with the associated event and guard conditions.
Activities that are invoked while in the state are specified as do Activities, and can be either continuous or discrete. A compos-
ite state has nested states that can be sequential or concurrent.

The following sections describe the abstract syntax, package structure, UML extensions, compliance levels and usage
examples for state machines.
SysML Specification v. 1.0 alpha 81

12.2 Diagram elements
The following tables describe the graphical nodes and paths for State Machines.

Table 12: Graphical nodes for State Machines.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX
REFERANCE COMPLIANCE

Action UML::Statemachines::
BehavioralStatemachines::
Transition

Basic

Choice pseudo
state

UML::Statemachines::
BehavioralStatema-
chines::PseudoState

Basic

Composite state UML::Statemachines::
BehavioralStatema-
chines::State

Basic

Entry point UML::Statemachines::
BehavioralStatema-
chines::PseudoState

Basic

Exit point UML::Statemachines::
BehavioralStatema-
chines::PseudoState

Basic

Final state UML::Statemachines::
BehavioralStatema-
chines::PseudoState

Basic

History, Shallow
pseudo state

UML::Statemachines::
BehavioralStatema-
chines::PseudoState

Basic

MinorReq := Id;

[Id>10]

d<=10]

S

Sb1 Sb3

Sb2

againagain

abortedabortedabortedaborted

H

82 SysML Specification v. 1.0 alpha

Initial pseudo
state

UML::Statemachines::
BehavioralStatema-
chines::PseudoState

Basic

Junction pseudo
state

UML::Statemachines::
BehavioralStatema-
chines::PseudoState

Basic

Receive signal
action

UML::Statemachines::
BehavioralStatema-
chines::Transition

Basic

Region UML::Statemachines::
BehavioralStatema-
chines::PseudoState

Basic

Send signal
action

UML::Statemachines::
BehavioralStatema-
chines::Transition

Basic

Simple state UML::Statemachines::
BehavioralStatema-
chines::State

Basic

State Machine UML::Statemachines::
BehavioralStatema-
chines::Statemachine

Basic

Table 12: Graphical nodes for State Machines.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX
REFERANCE COMPLIANCE

Req(Id)

S

TurnOn

S

ReadAmountSM

aborted
SysML Specification v. 1.0 alpha 83

12.3 Package structure
Figure 12-1 shows the package structure for State Machines.

Submachine
state

UML::Statemachines::
BehavioralStatema-
chines::State

Basic

Table 13: Graphical paths for State Machines.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX
REFERANCE COMPLIANCE

Transition UML::Statemachines::
BehavioralStatema-
chines::Transition

Basic

Figure 12-1. Package structure for State Machines.

Table 12: Graphical nodes for State Machines.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX
REFERANCE COMPLIANCE

R e a d A m o u n t :
R e a d A m o u n tS M a b o r te da b o r te d

R e a d A m o u n t :
R e a d A m o u n tS M a b o r te da b o r te d

Event [Guard]/ Action

SysML::StateMachines

UML::BehaviorStateMachines

«import»
84 SysML Specification v. 1.0 alpha

12.4 UML extensions
No UML extensions are defined for State Machines.

12.5 Usage examples
The following diagrams illustrate how state machine diagrams are used. A complete sample problem that includes State
Machine diagrams can be found in .

Figure 12-2 shows the state machine diagram that describes the dynamic behavior of a Transmission for the Activity
“Shift”. This version of the state machine diagram uses the notation commonly refered to as “state centric”. In this notation
the nodes represent the states and the trigger, guard, action associated with transitions are specified using text associated with
the transition. The inverted fork notation in the lower left hand corner of the Reverse and Forward states indicates that these
states have sub-states defined.

Figure 12-3 shows the same state machine diagram drawn using the “transition centric” notation. Using this notation,
triggers, actions and guards are shown as nodes on the diagram. Both diagrams are semantically equivalent. The choice of
state centric or transition centric statemachine notation is a matter of modeler preference.

Figure 12-2. State-Centric State Machine Diagram: Transmission “Switch Gear” Behavior

State Machine Diagram: Transmission Shift behavior

dir

TransCmd_getSpeed()/^TransData(speed);

[neutral]/speed=0;emTorque=0;iceTorque=0;

TransCmd_Dir(dir)

TransCms_getSpeed()/TransData(speed);

[park]/speed=0;emTorque=0;iceTorque=0;

[rev]/speed=0;emTorque=0;iceTorque=0;

TransCmd_Dir(dir)

TransCmd_getSpeed()/^TransData(speed);

TransCmd_Dir(dir)

[forward]/speed=0;emTorque=0;iceTorque=0;

TransCmd_Dir(dir)

Reverse

Park

ForwardNeutral
SysML Specification v. 1.0 alpha 85

Figure 12-3. Transition-Centric State Machine Diagram: Transmission “Switch Gear” Behavior

State Machine Diagram: Transmission Shift Behavior

Park

TransCmd_Dir(dir)

dir

speed=0;
emTorque=0;
iceTorque=0;

[forward]

speed=0;
emTorque=0;
iceTorque=0;

[neutral]

speed=0;
emTorque=0;
iceTorque=0;

[park]

speed=0;
emTorque=0;
iceTorque=0;

Forward Reverse

TransCmd_Dir(dir) TransCmd_getSpeed() TransCmd_Dir(dir) TransCmd_getSpeed()

Neutral

TransCmd_Dir(dir) TransCmd_Dir(dir)

Park

TransData(speed) TransData(speed)

[reverse]
86 SysML Specification v. 1.0 alpha

13 Use Cases

13.1 Overview
The UseCases package defines a set of constructs for modeling required usages of a system. A use case diagram specifies the
sequences of actions that a system can perform by interacting with outside agents (actors) to provide service transactions (use
cases). Use case diagrams define use cases, actors and the associated communications between them. Actors may represent
users, external systems, or other environmental entities. They may interact either directly or indirectly with the system. Actors
may be specialized to represent a taxonomy of user types or external systems.

The subject of the use case can be represented via a system boundary. The use cases that are enclosed in the system
boundary represent functionality that is realized by behaviors such as activity diagrams, sequence diagrams, and state machine
diagrams.

The primary use case relationships are: include, extend, and generalization. The include relationship provides a mecha-
nism for specifying common functionality which is shared among multiple use cases, and is always performed as part of the
base use case. The extend relationship furnishes optional functionality that extends the base use case at a particular point under
specific conditions. The generalization relationship provides a mechanism for specializing use cases.

Use Cases are powerful analysis aids during early analysis and design. They permit one to quickly identify external sys-
tems and/or users that interact with the system, to identify the associated external interfaces and to perform the initial, high-
level functional decomposition (via the «include» relationship). Use Cases thus permit the high level description of behavior
while bounding the system and providing context. They can be compared to the Context Diagram of the Data Flow Diagram
(DFD) notation.

The following sections describe the abstract syntax, package structure, UML extensions, compliance levels and usage
examples for Use Cases.
SysML Specification v. 1.0 alpha 87

13.2 Diagram elements

Table 14. Graphical nodes for Use Cases.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Use Case UML::UseCases Basic

Actor UML::UseCases Basic

Subject Role name on Classifier Basic

Table 15. Graphical paths for Use Cases.

PATH TYPE CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Communication
path

UML::Classes::Kernel::Associ-
ation

Basic

Include UML::UseCases Basic

Extend UML::UseCases Basic

UseCaseName

<<actor>>
systemName

SubjectName

<<include>>

<<extend>>
88 SysML Specification v. 1.0 alpha

13.3 Package structure

13.4 UML extensions
No UML extensions are defined for Use Cases.

Figure 13-1. Package structure for SysML Use Cases.

UML::UseCases

SysML::UseCases

«import»
SysML Specification v. 1.0 alpha 89

13.5 Usage examples
The following diagrams illustrate how Use Case diagrams are used. A complete sample problem that includes Use Case dia-
grams can be found in Appendix B.

Figure 13-2 shows the use case diagram for Hybrid SUV. The top level “Drive” use case is decomposed using «include» use
cases. The subject (the HybridSUV) and the actors (Driver, Maintenance, IsuranceService and DMV) interact with the system
to realize the use case.

This diagram aids in analysis by establishing the scope and context of the system under development (:HybridSUV), iden-
tifying key external entities (people, external systems, etc.) that interact with the system along with the associated external
interfaces, and providing the initial high level decomposition of behavior according to key system threads or scenarios.

One example of re-use, the fact that the Brake use case is included in the Park and Drive use cases, is shown.

Figure 13-2. Top-Level Use Cases for HybridSUV system.

Use Case Diagram: Top-Level Use Cases

Driver

 Drive

 Park

 Maintain

 Insure

 Register

 Start

 SelectGear

 Accelerate

 Steer

 Brake

Maintenance

InsuranceService

DMV

«include»

«include»

«include»

«include»

«include»

«include»

:HybridSUV
90 SysML Specification v. 1.0 alpha

Part IV - Crosscutting Constructs
This Part specifies generic constructs that apply to both structure and behavior. It includes Requirements, Allocations, Model
Management, Types, Auxiliary Constructs, and Profiles.
SysML Specification v. 1.0 alpha 91

92 SysML Specification v. 1.0 alpha

14 Requirements

14.1 Overview
A requirement specifies a capability or condition that a system must satisfy. A requirement may specify a function that a sys-
tem must perform or a performance condition that a system must fulfill. SysML provides modeling constructs to represent
requirements and relate them to other modeling elements.

A requirement can be decomposed into subrequirements, so that multiple requirements can be organized as a tree of com-
pound requirements. Requirements can be related to each other, as well as to analysis, design, implementation and testing ele-
ments. A requirement can be generated or deduced from another requirement using the «derive» relationship. A requirement
can be fulfilled by other model elements using the «satisfy» relationship. A requirement can be verified by various behaviors
using the «verify» relationship. All of these are specializations of the UML «trace» relationship, which is used to track require-
ments and changes across models.

Modelers can categorize requirements by modifying their predefined properties, which include id, source, text, kind, veri-
fyMethod, and risk. The latter three properties are defined via enumerations in Chapter 17, “Types”, and can be customized by
SysML vendors and users using the non-normative enumerations defined in See Appendix D, “Non-Normative Model
Library”.

The following sections describe the abstract syntax, package structure, UML extensions, compliance levels and usage
examples for Requirements.
SysML Specification v. 1.0 alpha 93

14.2 Diagram elements
This section describes the concrete syntax for graphical nodes and paths in Requirement diagrams.

Table 1. Graphical nodes for Requirements.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Requirement SysML::Requirements::
Requirement

Basic

TestCase SysML::Requirements::
TestCase

Basic

Table 2. Graphical paths for Requirements.

PATH TYPE CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Composition UML::Classes::Kernel::Prop-
erty with aggregation equal
composite

Basic

Derive SysML::Requirements Basic

Satisfy SysML::Requirements Basic

Verify SysML::Requirements Basic

«requirement»
RequirementName

«requirement»
id = “MyID”
source = “Marketing”
text = “Requirement description”
kind = “Performance”
verifyMethod = “Analysis”
risk = “High”

«testCase»
TestCaseName

«derive»

«satisfy»

«verify»
94 SysML Specification v. 1.0 alpha

14.3 Package structure

Figure 14-1. Package structure for Requirements.

14.4 UML extensions

UML::Classes::Dependencies

SysML::Requirements

«import»

UML::CommonBehaviors::
BasicBehaviors

«import»

SysML::Types
«import»

UML::Classes::Kernel

«import»

UML::StandardProfileL1

«import»
SysML Specification v. 1.0 alpha 95

Figure 14-2. Abstract syntax for Requirements.

14.4.1 Stereotypes

14.4.1.1 Derive

Definition

A Derive relationship is a trace dependency between a derived requirement and a source requirement, where the derived
requirement is generated or inferred from the source requirement.

Description

Derive is a specialization of the UML trace dependency. For example, a design requirement might derive from an analysis
requirement, or a measure of effectiveness might derive from an analysis requirement. The arrow direction points from the
derived requirement to the original requirement from which it is derived.

Constraints

[1] The source element must be an element stereotyped by «requirement».

[2] The target element must be an element stereotyped by «requirement».

«stereotype»
UML::StandardProfileL1::

Trace

«stereotype»
Derive

«stereotype»
Satisfy

«stereotype»
Verify

«metaclass»
UML::Classes::
Kernel::Class

id : String
source : String
text : String
kind : RequirementKind
verifyMethod : VerifyMethodKind
risk : RiskKind

«stereotype»
Requirement

«metaclass»
UML::CommonBehaviors::
BasicBehaviors::Behavior

«metaclass»
UML::Classes::Kernel

::Operation

«stereotype»
TestCase
96 SysML Specification v. 1.0 alpha

14.4.1.2 Requirement

Definition

A Requirement specifies a capability or condition that a system must satisfy. A requirement may define a function that a sys-
tem must perform or a performance condition that a system must fulfill. Requirements are used to establish a contract between
the customer (or other stakeholder) and those responsible for designing and implementing the system.

Description

Requirement is a stereotype of Class. Composite requirements can be created by using the composition association. The
default interpretation of a composite requirement, unless stated differently by the composite requirement itself, is that all its
component requirements must be satisfied for the composite requirement to be satisfied.

Attributes

id : String The identifier of the requirement.

source : String The origin of the requirement, which can be expressed as a document title, a reference
to document title, a reference to a stakeholder, or a stakeholder type (i.e., Marketing).

text : String The textual description or a reference to the textual description of the requirement.

kind : RequirementKind The kind/classification of the requirement.

risk : RiskKind The exposure severity (product of probability of the risk occurring and consequence
of the risk occurring).

verifyMethod :VerifyMethodKind Specifies the applicable method for verifying the requirement.

Constraints

[1] The property isAbstract must be set to true.

[2] The only associations allowed for classes stereotyped by «requirement» are aggregation associations with other classes
stereotyped by «requirement» where isComposite must be set to true and the lower bound for multiplicity must be set to
zero.

[3] The property ownedOperation must be empty.

[4] The subtypes of a class stereotyped by «requirement» must also be stereotyped by «requirement».

[5] A nested classifier of a class stereotyped by «requirement» must also be a requirement.

14.4.1.3 RequirementKind (user defined enumeration)

A RequirementKind is a enumeration specifying classification categories for requirements. This enumeration is defined in the
chapter SysML::Types (and corresponding SysML package) to facilitate user customization.

14.4.1.4 RiskKind (user defined enumeration)

A RiskKind is a user defined enumeration specifying risk categories for requirements. This enumeration is defined in the chap-
ter SysML::Types (and corresponding SysML package) to facilitate user customization.
SysML Specification v. 1.0 alpha 97

14.4.1.5 Satisfy

Definition

A Satisfy relationship is dependency between a supplier requirement and a client model element that fulfills the requirement.

Description

Satisfy is a specialization of the UML trace dependency. As with other dependencies, the arrow direction points from the satis-
fying (client/source) model element to the (supplier/target) requirement that is satisfied.

Constraints

[1] The target must be an element stereotyped by «requirement» or by one of «requirement» subtypes.

[2] The source must be an element that is not stereotyped by «requirement».

14.4.1.6 TestCase

Definition

A test case is a behavior or operation that specifies how a requirement is verified. A test case can address one or more verifica-
tion methods. A test case always returns a verdict.

Description

Test Case is a stereotype of Behavior and Operation. A SysML test case is compatible with test case as it is defined in the UML
Profile for Testing, but is not equivalent to it, since the semantics of SysML test case are more limited.

Constraints

[1] The type of the return result parameter of a test case must be Verdict.

14.4.1.7 Verdict (a user defined enumeration)

A verdict is a user defined enumeration specifying the set of possible evaluation results for a test case. This enumeration is
defined in the chapter SysML::Types (and corresponding SysML package) to facilitate user customization.

14.4.1.8 Verify

Definition

A Verify relationship is a trace dependency between a supplier requirement and a client test case that determines whether a
system fulfills the requirement.

Description

Verify is a specialization of the UML trace dependency. As with other dependencies, the arrow direction points from the (cli-
ent/source) model element to the (supplier/target) requirement.

Constraints

[1] The target must be an element stereotyped by «requirement» or by one of «requirement» subtypes.

[2] The source must be an element stereotyped by «testCase».
98 SysML Specification v. 1.0 alpha

14.4.1.9 VerifyMethodKind (user defined enumeration)

A VerifyMethodKind is a user defined enumeration specifying the methods that can be used for verifying a requirement. This
enumeration is defined in the chapter SysML::Types (and corresponding SysML package) to facilitate user customization.

14.4.2 Table extensions

In order to increase the density of information, Requirements trace dependencies can also be shown using a compact tabular
presenation format called a Requirements Traceability Table. A Requirements Traceability Table should contain, but is not
limited to, the following information:

• Trace [Dependency] Name - the name of the trace dependency

• Trace [Dependency] Kind - the type of the trace dependency (e.g., derive, satisfy, verify)

• Source Name - the name of the source of the trace dependency

• Source Kind - the type of the source (e.g., requirement, activity, block)

• Target Name - the name of the target of the trace dependency

• Target Kind - the type of the target (e.g., requirement, block)

14.5 Usage examples
The following diagrams illustrate how Requirements diagrams are used. A complete sample problem that includes Require-
ments diagrams can be found in Appendix B, “Sample Problem”.
SysML Specification v. 1.0 alpha 99

Figure 14-3 shows how a compound requirement can be decomposed into multiple sub-requirements.

.

Figure 14-3. Decomposition of a compound requirement.

Requirement Diagram: Top-Level User Requirements

«requirement»
HybridSUV

«requirement»
id =”UR1.1"
source = “Marketing”
text = “Load”
kind = “Functional”
verifyMethod =”Test”
risk =”Low”

«requirement»
Load

«requirement»
id =”UR1.2"
source = “Marketing”
text = “Eco-Friendliness”
kind = “Performance”
verifyMethod = ”Analysis”
risk = ”High”

«requirement»
Eco-Friendliness

«requirement»
id = ”UR1.3"
source = “Marketing”
text = “Performance”
kind = “Performance”
verifyMethod =”Test”
risk =”Medium”

«requirement»
Performance

«requirement»
Ergonomics

«requirement»
Passengers

«requirement»
Cargo

«requirement»
FuelCapacity

«requirement»
id = ”UR1.2.1"
source = “Marketing”
text = “The car shall meet 2010 Kyoto
Accord emissions standards.”
kind = “Performance”
verifyMethod =”Test”
risk =”Medium”

«requirement»
Emissions

«requirement»
id = “UR1.3.1”
source = “Marketing”
text = “Users shall obtain fuel
economy better than that provided
by 95% of cars built in 2004.”
kind = “Performance”
verifyMethod = “Test”
risk = “High”

«requirement»
FuelEconomy «requirement»

Range

«requirement»
Braking

«requirement»
Power

«requirement»
Acceleration

UR1.1 UR1.4

UR1.1.1

UR1.1.2

UR1.1.3

UR1.2.1

UR1.3.5

UR1.3.2

UR1.3UR1.2

UR1.3.1 UR1.3.3

UR1.3.4
100 SysML Specification v. 1.0 alpha

Figure 14-4 shows how requirements can be derived from other requirements.

Figure 14-4. Requirements derivation using compact stereotype notation.

R equirem ents D iagram : R equirem ent D erivations

«requ irem ent»
::H ybridS U V ::P erfo rm ance ::FuelE conom y

«requ irem ent»
::H ybridS U V ::P erform ance ::B raking

«requ irem ent»
id : = ”SR 3.5 .5"
source = “T rade S tudy 13 -25”
text:S tring = “The veh ic le sha ll convert k inetic energy to
e lectrica l energy to recharge the battery and provide
additiona l braking capability .”
reqType :S tring = “Functiona l”
verifyM ethod =”Test”
risk = ”m edium ”

«requ irem ent»
R egenera tive B raking

«derive»

«derive»

«requirem ent»
id : “SR 3.5 .1 ”
source : “T rade S tudy 13-25”
text = “If the veh ic le ve locity is be low 10 km /h the e lectric m otor sha ll be used as the
so le pow er source . If the veh ic le ve locity is betw een 10 km /h and 50 km /h the in terna l
com bustion engine sha ll be used as the so le pow er source . If the ve locity o f the veh ic le
is greate r than 50 km /h the e lectric m otor and in terna l com bustion engine sha ll both be
used as pow er sources .”
reqType = “Functiona l”
risk = “m edium ”

«requirem ent»
Pow erSourceSelection

«requirem ent»
::H ybridSU V::Eco -Fried liness::Em issions

«derive»

«derive»

«requirem ent»
::H ybridSU V::Perform ance::R ange

«requirem ent»
::H ybridSU V::Perform ance::A cceleration

«requirem ent»
id = “U R 1.3 .1 ”
text = “U sers sha ll obta in fue l econom y be tter than that
provided by 95% of cars bu ilt in 2004 .”

«derive» «derive»

«derive»
SysML Specification v. 1.0 alpha 101

Figure 14-5 shows how model elements can satisfy requirements..

Figure 14-6 shows how requirements can be verified by test case behaviors.

Figure 14-5. Requirements satisfaction.

Requirement Diagram: System Requirement PowerSourceSelection Satisfaction

«requirement»
PowerSourceSelection

«usecase»
::SUV::UseCases::Accelerate

«block»
::SUV::Blocks::EngineControlUnit«satisfy»

«satisfy»
102 SysML Specification v. 1.0 alpha

Figure 14-6. Requirements verification.

Requirement Diagram: Requirement Verification

«interaction, testCase»
::SUV::Tests::ConvertKineticToElectrical

«requirement»
Regenerative Braking

«verify»

«activity, testCase»
::SUV::Tests::ConvertKinetic

«verify»
SysML Specification v. 1.0 alpha 103

Figure 14-7 shows a wide range of requirement traces, including derive, satisfy and verify trace dependencies, as well as allo-
cation relationships.

Figure 14-8 shows an example of a requirement trace dependency table generated from Figure 16-7.

Figure 14-7. Requirements traceability

Requirements Diagram: Requirement Derivations

«requirement»
::HybridSUV::Performance ::FuelEconomy

«requirement»
PowerSourceSelection

«requirement»
::HybridSUV::Eco-Friedliness::Emissions

«derive» «derive»

«block»
::SUV::Blocks::EngineControlUnit

«usecase»
::SUV::UseCases::Accelerate

«activity»
::SUV::Activities::ControlPower::Calc_Desired_Velocity

«activity»
::SUV::Activities::ControlPower::Calc_Req_RPM

«satisfy» «satisfy»

«allocate» «allocate»

«interaction, testcase»
::SUV::Tests::PowerSourceSelection

«verify»

«block»
::SUV::Blocks::PowerSubSystem

ecu1
104 SysML Specification v. 1.0 alpha

Figure 14-8. Example of requirements trace dependency table

Dependency TraceKind SourceName SourceKind TargetName TargetKind

of ::SUV::Blocks::EngineControlUnit allocate Calc_Desire_vel Activity EngineControlUnit Block

of ::SUV::Blocks::EngineControlUnit allocate Calc_Req_RPM Activity EngineControlUnit Block

of ::SUV::Requirements::HybridSUV::Performance::FuelEconomy derive PowerSourceSelection Requirement FuelEconomy Requirement

of HybridSUV::'Eco-Friendliness'::Emissions derive PowerSourceSelection Requirement Emissions Requirement

of ::SUV::Tests::PowerSourceSelection satisfy PowerSubSystem Block PowerSourceSelection Requirement

of ::SUV::Tests::PowerSourceSelection satisfy Accelerate Usecase PowerSourceSelection Requirement

of ::SUV::Tests::PowerSourceSelection verify PowerSourceSelection Interaction PowerSourceSelection Requirement

SysML Specification v. 1.0 alpha 105

106 SysML Specification v. 1.0 alpha

15 Allocations

15.1 Overview
It is a systems engineering best practice to separate structure (form) from behavior (function) so that designs can be opti-

mized by considering several different structures that provide the desired emergent behavior and properties. This approach
provides the required degrees of freedom (in particular, how to decompose structure, how to decompose behavior, and how to
relate the two) to optimize designs based upon trade studies among alternatives. The implication is that an explicit set of rela-
tionships must be maintained between form and function for each althernative. These relationships are known as allocation
relationships. A more formal definition of allocation follows: Allocation is the term used by systems engineers to describe a
design decision that assigns responsibility for meeting a requirement (requirements allocation) or implementing a behavior
(functional allocation) to structural elements of the system.

In object oriented software design the engineer also performs allocation of function to form, both explicitly and implicitly.
On a class diagram (cf. Block Definition diagram) the operations defined on a class (cf. Block) explicitly define the allocation
of responsibility to the class for providing the associated behavior (see Chapter 9 for more on Blocks). In a sequence diagram,
a message sent to a lifeline implicitly defines that that the receiving part will provide the associated behavior (see Chapter 12
for more on Sequences). In activity diagrams the placement of an activity in a partition implicitly defines that the part repre-
sented by the partition will provide the associated behavior (see Chapter 11 for more on Activities).

However, the systems engineer's concept of "allocation" requires a flexibility of expression suitable for abstract system
specification and analysis. When searching for optimum designs, systems engineers are often required to associate behavior
and structure in abstract, preliminary, and sometimes tentative ways. It is inappropriate to force the systems engineer into the
detail of rigorous specification of object oriented methods too early in the development of a system architecture or design. The
application of rigorous methods will surely follow, once the design decisions and made and behavior and structure models are
more fully expressed. In the meantime, it is important and appropriate for systems engineers to use the notion of allocation to
assess just how well the system "hangs together".

The various types of elements generally associated with one another in practice have given rise to various uses of the word
"allocation". This chapter does not try to limit the use of the term "allocation", but to provide a basic capability to support allo-
cation in the broadest sense, that of capturing an early design decisions.

The following sections describe the abstract syntax, package structure, UML extensions, compliance levels and usage
examples for Allocations.

15.2 Diagram elements

Table 3. Graphical nodes for Allocations.

NODE TYPE CONCRETE SYNTAX ABSTRACT SYNTAX COMPLIANCE

Allocation derived
properties displayed
in compartment of
Block.

SysML::Allocations::
Allocated

Basic

«allo cated»
{a lloca tedF rom = E lem entN am e }
{a lloca tedT o= E lem entN am e}

B lo ckN am e
SysML Specification v. 1.0 alpha 107

Allocation derived
properties displayed
in Comment.

SysML::Allocations::Allo-
cated

Basic

Table 4. Graphical paths for Allocations.

PATH TYPE CONCRETE SYNTAX ABSTRACT SYNTAX COMPLIANCE

Allocation SysML::Allocations::Allocate Basic

Table 3. Graphical nodes for Allocations.

NODE TYPE CONCRETE SYNTAX ABSTRACT SYNTAX COMPLIANCE

ElementName

«allocated»
{allocatedFrom= ElementName}
{allocatedTo= ElementName}

«allocate»
108 SysML Specification v. 1.0 alpha

15.3 Package structure

15.4 UML extensions

15.4.1 Stereotypes

15.4.1.1 Allocate

Description

Figure 15-1. Package structure for Allocations.

Figure 15-2. Abstract syntax for Allocations.

UML::Classes::
Dependencies

SysML::Allocations

«import»

UML::Classes::Kernel

«import»

UML::StandardProfileL1

«import»

«stereotype»
UML::StandardProfileL1::

Trace

«stereotype»
Allocate

UML::Classes::Kernel::
NamedElement

/allocatedFrom:NamedElement
/allocatedTo:NamedElement

«stereotype»
Allocated
SysML Specification v. 1.0 alpha 109

Allocation is a mechanism for associating elements of different types, or in different hierarchies, at an abstract level. Alloca-
tion is used for assessing user model consistency, completeness (eg. is all behavior allocated to at least one block) and direct-
ing future design activity. It is expected that an «allocate» relationship between model elements is a precursor to a more
concrete relationship between the elements, their properties, operations, attributes, or sub-classes.

Allocation is a subtype of the UML «trace» dependency permissable between any two NamedElements. It is directional - one
NamedElement is the source, and one NamedElement is the target of an allocation.

Per systems engineering convention, the arrowhead end (target) of the «allocate» trace must be the element “allocated to”.

The «allocate» trace may be further subtyped by the user with particular constraints regarding element type and attributes
(see Chapter 19 Profiles and Model Libraries for information on extending SysML).

Constraints

[1] A single «allocate» trace shall have only one source (no arrowhead) and one target (arrowhead).

[2] Subtypes of the «allocate» trace should have constraints applied to constrain source and target types as appropriate.

15.4.1.2 Allocated

Description

Allocated applies to model elements that have at least one allocation relationship with another model element. Allocated
elements may be either the source or target of an «allocate» trace.

The «allocated» stereotype provides a mechanism for a particular model element to conveniently retain and display the
element at the opposite end of any «allocate» trace. This stereotype provides for the properties “allocatedFrom” and “allocat-
edTo”, which are derived from the «allocate» trace.

Attributes

The following properties are derived from any «allocate» trace:

/allocatedTo – the set of elements that are the targets of an «allocate» trace whose source is extended by this stereotype
(instance). This property is the union of all targets to which this instance is the source, i.e. there is only one /allocatedTo prop-
erty per allocated model element.

/allocatedFrom – reverse of allocatedTo: the set of elements that are sources of an «allocate» whose target is extended by
this stereotype (instance). The same characteristics apply as to /allocatedTo.

15.4.2 Diagram extensions

An «allocate» relationship is represented diagrammatically by a dependency with the keyword «allocate».

 The properties /allocatedFrom and /allocatedTo may be displayed in a compartment, or in a comment. In both cases, curly
braces {} are used to express the property as shown below:

{allocatedFrom= ElementName}

{allocatedTo= ElementName}

When applied to a classifier, an additional compartment may be used to display the «allocated» stereotype and its proper-
ties. The allocation compartment may be elided from the diagram. Basic compliance requires the allocation compartment for
Blocks only. Advanced compliance requires the allocation compartment for Actions and Parts.

A comment may be used with any NamedElement. When used, the stereotype «allocated» will be used to distinguish the
it from a constraint. Comments may be used on associations, including ActivityEdges and Connectors. (Basic compliance)
110 SysML Specification v. 1.0 alpha

15.4.3 Table extensions

In order to increase the density of information, allocation trace dependencies can also be shown using a compact tabular pre-
sentation format called an Allocation Traceability Table. An Allocation Traceability Table must contain, but is not limited to,
the following information:

• Source Name - the name of the source of the allocation

• Source Kind - the type of the source

• Target Name - the name of the target of the allocation

• Target Kind - the type of the target

 See Section 15.5 for an example of a tabular representation of allocations.

15.5 Usage examples
The following examples are provided as an overview for representing allocation in SysML diagrams.

Figure 15-3 shows the allocation of sub-activities of the ControlPower and BrakeCar activities defined in Chapter 11 to
the Transmission Block of the Hybrid SUV defined in Chapter 9. An «allocate» trace is drawn from from each activity to the
Transmission block. Also shown is the «allocated» stereotype applied to the source and target of each «allocate» trace as a
result of the allocation. The presence of the «allocated» keyword provides a useful means of initial coverage analysis as one
can quickly scan diagrams to assess if all activities have been allocated and that all blocks have at least one behavior allocated
to them.

It is important to note that «allocate» traces can be created between elements in the model without the need to show them
on a diagram. This is important for two reasons: 1) in some cases it is not possible to put both elements involved in the trace
relationship on the same diagram, for example connectors and activity edges; and 2) in many cases it will be more convenient
to create the traces by other means (ex. tools could provide a matrix view to establish allocations, or right-click menues, or
other means).
SysML Specification v. 1.0 alpha 111

Figure 15-4 shows the properties of the Transmission Block in a separate Block Definition diagram. In this case the «allo-
cate» dependencies are not visible, however the «allocated» properties are displayed in a comment symbol.

As a result of the allocations, the model has been further elaborated to show operations of the Transmission Block which
correspond to the allocations made.

Figure 15-3. Block Definition Diagram:Allocation of behavior to the Transmission

Block Definition Diagram: Allocation of Activities to Transmission

«activity, allocated»
::SUV::Activities::ControlPower::Meas_Current_vel

«activity, allocated»
::SUV::Activities::ControlPower::Amplify_Torque

«activity, allocated»
::SUV::Activities::BrakeCar::ConfigRegen

«activity, allocated»
::SUV::Activities::SetGear::Shift

«block, allocated»
::SUV::Blocks::Transmission

«allocate»

«allocate»

«allocate»

«allocate»

«activity, allocated»
::SUV::Activities::BrakeCar::Combine_Torque

«allocate»
112 SysML Specification v. 1.0 alpha

Figure 15-5 shows an Allocation Traceability Table, which is an alternate tabular presentation of the allocation traces in the
model. This table could easily be generated by tools via queries on the model.

Figure 15-4. Properties of the Transmission Block showing allocations

Block Definition Diagram: Transmission Properties

iTransCmds

iDriver

Shift(dir:Direction)
Meas_Cur_vel()
Combine_Torque(emTorque:Torque, iceTorque:Torque, outTorque:Torque)
Amplify_Torque(inTorque:Torque, outTorque:Torque)
ConfigRegen()

mass:Kilograms
dir:Direction
speed:KPH=0
emTorque:Torque
iceTorque:Torque
outTorque:Torque
inRPM:Real=0
outRPM:Real=0

«block, allocated»
Transmission

TS1:fsTorque TS2:fsTorque TS3:fsTorque

fsTorque::Torque fsTorque::Torque fsTorque::revTorque fsTorque::revTorque fsTorque::Torque

TJ1

iTransData

TJ2

iAxelCmds

«allocated»
AllocatedFrom = Shift, Meas_Cur_vel, Combine_Torque, Amplify_Torque, ConfigRegen
SysML Specification v. 1.0 alpha 113

Figure 15-5. Example Allocation Table

Target Block

Source Activity EngineControlUnit InternalCombustionEngine Transmission FrontWheelAxel FrontWheel ElectricalMotor BrakingSubsystem Inverter BatteryPack

InitializeICE allocate

StartICE allocate

SwitchGear allocate

Shift allocate

Calc_Desire_vel allocate

Meas_Current_vel allocate

Calc_Req_RPM allocate

Amplify_Torque allocate

Split_Torque allocate

Provide_Traction allocate

Prod_Torque allocate

Prod_Torque allocate

Brake allocate

SetRegenBrake allocate

ConfigRegen allocate

Combine_Torque allocate allocate

GenerateAC allocate

RectifyCurrent allocate

StoreElectricalEnergy allocate

ConvertDCtoAC allocate

114 SysML Specification v. 1.0 alpha

16 Model Management

16.1 Overview
The Model Management package defines a set of constructs for managing the complexity of SysML models. The primary

constructs used for managing model complexity are packages and views. A package is a generic mechanism for grouping
modeling constructs, whereas a view is a stereotype of package that is an abstraction of a whole system, and that addresses one
or more concerns of the system stakeholders. A view conforms to its viewpoint, which specifies the purpose, stakeholders,
stakeholder concerns, language selections and method selections associated with the view.

The defintions of view and viewpoint used by SysML are intended to be compatible with the IEEE 1471 Recommended Prac-
tice for Architecture Description. See See “Non-Normative References” on page 7.

The following sections describe the abstract syntax, package structure, UML extensions, compliance levels and usage
examples for Model Management.

16.2 Diagram elements

Table 5. Graphical nodes for Model Management.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

PackageDiagram N/A Basic

Package UML::Classes::Kernel::Package Basic

View SysML::ModelManage-
ment::View

Basic

Package AcmeSystem

Package1 Package2
<<import>>

PackageName

<<view>>
ViewName
SysML Specification v. 1.0 alpha 115

Viewpoint SysML::ModelManage-
ment::Viewpoint

Basic

Table 6. Graphical paths for Model Management.

PATH NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Conform SysML::ModelManage-
ment::Conform

Basic

PackageImport UML::Classes::Kernel::Elemen-
tImport with visibility = public

Basic

PackageAccess UML::Classes::Kernel::Elemen-
tImport with visibility = private

Basic

PackageContainment UML::Classess::Kernel::Pack-
age::ownedElement

Basic

Trace UML::StandardProfileL1::
«trace»

Basic

Table 5. Graphical nodes for Model Management.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

«viewpoint»
Distribution

«viewpoint»
purpose = “To define ...”
stakeholders = “Planners, ...”
concerns = “What talks to ...”
languages = “SysML”
methods = “transport paradigms”

«conform»

«import»

«access»

«trace»
116 SysML Specification v. 1.0 alpha

16.3 Package structure

16.4 UML extensions

Figure 16-2. Abstract syntax for Model Management.

Figure 16-1. Package structure for Model Management.

UML::Classes::Dependencies

SysML::ModelManagement

«import»

UML::Classes::Kernel

«import»

UML::StandardProfileL1

«import»

«metaclass»
UML::Classes::
Kernel::Class

purpose: String
stakeholders: String
concerns: String
language: String
methods: String

«stereotype»
Viewpoint

«metaclass»
UML::Classes::
Kernel::Package

 viewpoint: Viewpoint

«stereotype»
View
SysML Specification v. 1.0 alpha 117

16.4.1 Stereotypes

16.4.1.1 Conform

Definition

A Conform relationship is dependency between a supplier viewpoint and a client view that fulfills the requirement.

Description

Conform is a specialization of the UML trace dependency. As with other dependencies, the arrow direction points from the
(client/source) view to the (supplier/target) viewpoint to which it conforms.

Constraints

[1] The target must be an element stereotyped by «viewpoint».

[2] The source must be an element that is stereotyped by «view».

16.4.1.2 View

Definition

A View is an abstraction of a whole system that addresses one or more concerns of the system stakeholders. A view has only
one viewpoint.

Description

View is a stereotype of package.

Attributes

viewpoint : Viewpoint [1] The viewpoint that is expressed by the view.

Constraints

N/A

16.4.1.3 Viewpoint

Definition

A Viewpoint specifies the purpose, stakeholders, stakeholder concerns, language selections and method selections related to a
view.

Description

View is a stereotype of Class.

Attributes

purpose : String The intention for defining the viewpoint.

stakeholders : String The individuals or organizations that have concerns about the system.

concerns : String The interest of the stakeholders.

languages : String The methods used to specify the viewpoint.
118 SysML Specification v. 1.0 alpha

methods : String The methods used to specify the viewpoint.

Constraints

 N/A

16.4.2 Diagram extensions

N/A

16.5 Usage examples
The following diagrams illustrate how Model Management diagrams are used.

Figure 16-3. Functional view conforming to its viewpoint.

Figure 16-4. Traceability across views: black box perspective

«viewpoint»
Functional

«viewpoint»
purpose = “To define ...”
stakeholders = “Systems Engineers, ...”
concerns = “What is responsible for”
languages = “SysML”
methods = “analysis components, ...”

<<view>>
Functional

«conform»

«view»
Operational

«trace» «view»
Functional

 «view»
Design

«trace»
SysML Specification v. 1.0 alpha 119

Figure 16-5. Traceability between Functional and Design views: white box perspective

 «view»
Functional

 «view»
Design

«block»
EngineControlUnit

«block»
Motor

«block»
Transmission

«block»
EngineControlUnit

«block»
ElectricMotor

«block»
4WDTransmission

«trace»

«trace»

«trace»
120 SysML Specification v. 1.0 alpha

17 Types

17.1 Overview
This chapter defines a number of enumerations used by the SysML profile. Specifically, the enumerations RequirementKind,
RiskKind, VerifyMethodKind and Verdict used by the Requirements package and the enumeration ControlValue used by the
Activities packages are specified. These enumerations are defined in this package, with no enumeration literals defined and
specialized in the non-normative model library to provide a default set of enumeration literals.

This architecture has been used to provide a flexible mechanism for users to tailor the literals to their specific needs.The
Real and Complex numeric types are also defined in this chapter.
SysML Specification v. 1.0 alpha 121

17.2 Diagram elements
This section describes the concrete syntax and abstract syntax reference for the enumerations and literals defined..

Table 1. Graphical nodes for Requirements.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Complex SysML::Types Basic

ControlValue SysML::Types Basic

Real SysML::Types Basic

RequirementKind SysML::Types Basic

RiskKind SysML::Types Basic

Verdict SysML::Types Basic

VerifyMethodKind SysML::Types Basic

realpart:Real
imaginarypart:Real

«datatype»
Complex

«enumeration»
ControlValue

«primitive»
Real

«enumeration»
RequirementKind

«enumeration»
RiskKind

«enumeration»
Verdict

«enumeration»
VerifyMethodKind
122 SysML Specification v. 1.0 alpha

17.3 Package structure

Figure 17-1. Package structure for Requirements.

17.4 UML extensions
There are no metaclass extensions defined in the ModelLibrary package. The package contains pre-defined enumerations and
datatypes (M1, or user model level constructs).

17.4.1 Enumerations

17.4.1.1 ControlValue

Definition

ControlValue is an enumeration that provides a means to specify the nature of a control flow. This enumeration is specialized
in the non-normative library to provide a default set of enumeration literals that may be customized by the user. See Appendix
D, “Non-Normative Model Library”.

Description

The ControlValue enumeration is a type available for modelers to apply when control is to be treated as data and for UML con-
trol pins. It can be used for behavior and operation parameters, object nodes, and attributes, and so on. The possible runtime
values are given as enumeration literals. Modelers can extend the enumeration with additional literals, such as suspend,
resume, with their own semantics.

Constraints

[1] UML::ObjectNode::isControlType is true for object nodes with type ControlValue.

17.4.1.2 RequirementKind

Definition

RequirementKind is a enumeration that provides classification categories for requirements. This enumeration is specialized in
in Appendix D, “Non-Normative Model Library” to provide a default set of enumeration literals that may be customized by
the user.

SysML::Types

UML::Classes::Kernel

«import»
SysML Specification v. 1.0 alpha 123

Description

Requirements may be classified using various taxonomies and each organization will have their own specific set of require-
ment classifications. In order to accomodate this wide variation in taxonomies the RequirementKind enumeration is defined
here, but the specific literals are specified via subclassing (specializing) this enumeration.

17.4.1.3 RiskKind

Definition

RiskKind is a enumeration that provides classification categories for risk. This enumeration is specialized in the non-norma-
tive library (see Appendix D, “Non-Normative Model Library”) to provide a default set of enumeration literals that may be
customized by the user.

Description

Risk may be classified using various taxonomies and each organization will have their own specific set of risk classifications.
In order to accomodate this wide variation in taxonomies the RiskKind enumeration is defined here, but the specific literals are
specified via subclassing (specializing) this enumeration.

17.4.1.4 Verdict

Definition

Verdict is a enumeration whose literal describe the outcome of a test case. This enumeration is specialized in the non-norma-
tive library (see Appendix D, “Non-Normative Model Library”) to provide a default set of enumeration literals that may be
customized by the user..

Description

The outcome of a verification activity may be specified in various ways by different organizations. In order to accomodate
this wide variation in taxonomies the Verdit enumeration is defined here, but the specific literals are specified via subclassing
(specializing) this enumeration.

17.4.1.5 VerifyMethodKind

Definition

VerifyMethodKind is a enumeration whose literal describe the method of verification to be applied for a requirement. This
enumeration is specialized in the non-normative library (see Appendix D, “Non-Normative Model Library”) to provide a
default set of enumeration literals that may be customized by the user..

Description

Verification may be accomplished by a wide variety of methods by different organizations. In order to accomodate this wide
variation in taxonomies the VerifyMethodKind enumeration is defined here, but the specific literals are specified via subclass-
ing (specializing) this enumeration.
124 SysML Specification v. 1.0 alpha

17.4.2 DataTypes

17.4.2.1 Complex

Definition

Complex is a pre-defined datatype in SysML that represents complex values.

Description

A complex value has a real and imaginary parts.

17.4.2.2 Real

Definition

Real is a primitive datatype that represents a real value.

Description

Real is a pre-defined datatype in SysML that represents a real value.

17.5 Usage examples
See Requirements Chapter, Activities Chapter and Appendix B for useage examples.
SysML Specification v. 1.0 alpha 125

126 SysML Specification v. 1.0 alpha

18 Auxiliary Constructs

18.1 Overview
This chapter defines auxiliary constructs that support modeling Systems.

The Auxiliary Constructs package defines a set of general purpose constructs that can be used to enhance other diagrams.
These constructs include Comment, ConstraintComment, Dependency, Enumeration, Problem, and Rationale. Of these seven
constructs, the first four are reused from UML; the latter three are unique to SysML.

This chapter also defines ValueType and DistributedValue stereotypes.

A ValueType is a primitive numerical data type used to type properties that represent physical quantities, such as mass,
length, and current. ValueTypes have additional properties, in addition to a value, specifying the associated quantity, unit and
dimension. A property typed by a ValueType is refered to as a ValueProperty.

A DistributedValue is a stereotype that may be applied to value properties to specify the probability distribution associ-
ated with the property. The properties of a DistributedValue specify a probability distribution (ex. Uniform, Gaussian, etc.),
and associated mean value and variance. DistributedProperty is defined to support modeling of properties that have associ-
ated probability distributions, such as manufacturing variances.

 The following sections describe the abstract syntax, package structure, UML extensions, compliance levels and usage
examples for Auxiliary Constructs.
SysML Specification v. 1.0 alpha 127

18.2 Diagram elements

Table 2. Graphical nodes for Auxiliary Constructs.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Comment UML::Kernel::Comment Basic

Constraint Comment UML::Kernel::Constraint Basic

DistributedValue SysML::AuxiliaryCon-
structs::«DistributedValue»

Basic

Enumeration UML::Kernel::Enumeration Basic

This is a
comment ...

{Vehicle.force = Vehicle.mass *
Vehicle.acceleration}

«distributedValue»
distribution=”Gaussian”
mean=100.0
variance=2.0

«distributedValue»
torque:NewtonMeters

«distributedValue»
torque:NewtonMeters

«distributeValue»
distribution=”Gaussian”
mean=100.0
variance=2.0

literalName1
literalNameN

<<enumeration>>
EnumerationName
128 SysML Specification v. 1.0 alpha

Problem SysML::AuxiliaryCon-
structs::«Problem»

Basic

Rationale SysML::AuxiliaryCon-
structs::«Rationale»

Basic

ValueProperty SysML::AuxiliaryCon-
structs::ValueProperty

Basic

ValueType SysML::AuxiliaryCon-
structs::«ValueType»

Basic

Table 3. Graphical paths for Auxiliary Constructs.

PATH NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Dependency UML::Kernel::Dependency Basic

Table 2. Graphical nodes for Auxiliary Constructs.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

<<problem>>
The problem here
is that …

<<rationale>>
The reason for
this follows …

«part,value»
torque:NewtonMeters

«reference,value»
torque:NewtonMeters

«valueType»
quantity=”Torque”
unit=”N*m”
dimension=”ML^2/T^2"

«valueType»
NewtonMeters
SysML Specification v. 1.0 alpha 129

18.3 Package structure

18.4 UML extensions

Figure 18-1. Package structure for Auxiliary Constructs.

UML::Classes::Dependencies

SysML::AuxiliaryConstructs

UML::Classes::Kernel

SysML::Types«import»

«import» «import»

«metaclass»
UML::Kernel::

Comment

«stereotype»
Problem

«stereotype»
Rationale

«metaclass»
UML::Kernel::

Primitive

quantity:String
unit:String
dimension:String

«stereotype»
ValueType

distribution:String
mean:Real
variance:Real

«stereotype»
DistributedValue

«metaclass»
UML::Kernel::

Property
130 SysML Specification v. 1.0 alpha

Figure 18-2. Abstract syntax for Auxiliary Constructs.

18.4.1 Stereotypes

18.4.1.1 DistributedValue

Definition

A DistributedValue is a ValueProperty with an associated probability distribution.

Description

A DistributedValue is a ValueProperty with an associated probability distribution. The type of probability distribution,
for example Gaussian, and associated mean and variance may be specified.

Attributes

distribution : String distribution defines the type of probability distribution associated with the
property, such as Uniform or Gaussian.

mean : Real mean defines the mean value of the distribution.

variance : Real variance defines the value of the variance of the distribution.

Constraints

[1] The DistributedValue stereotype may only be applied to a property typed by a ValueType.

18.4.1.2 Problem

Definition

A Problem documents a deficiency, limitation, or failure of one or more model elements to satisfy a requirement or need, or
other undesired outcome.

Description

A Problem is a stereotype of Comment.

Attributes

N/A

Constraints

N/A

18.4.1.3 Rationale

Definition

A Rationale documents a reason or principle for the basis of a model element.
SysML Specification v. 1.0 alpha 131

Description

A Rationale is a stereotype of Comment.

Attributes

N/A

Constraints

N/A

18.4.1.4 ValueProperty

Definition

A valueProperty is a property that is typed by a ValueType.

Description

A ValueProperty are property that is typed by a ValueType. ValueProperties may be owned by the containing block by
composition (i.e. «part») or reference (i.e. «reference»).

Attributes

N/A

Constraints

N/A

Notation
[2] The notation for a ValueProperty is the same as the notation for property, except that the keyword «value» is shown

before the name.

18.4.1.5 ValueType

Definition

A ValueType is a primitive numerical data type used to classify properties that represent physical quantities, such as mass,
length, and current. ValueTypes have additional properties, in addition to a value, specifying the associated quantity, unit and
dimension.

Description

A ValueType is an extension of UML DataType used to classify (or type) properties that represent physical quantities.
Properties typed by a ValueType do not have identity but rather are simple values that can be manipulated according to
the rules of real mathematics (addition, subtraction, test for equality, etc.) ValueTypes also have properties that specify
the associated quantity, unit and dimension. SysML provides a library of pre-defined ValueTypes (See Chapter XXX
Types).

Attributes

• quantity: String Specifies the quantity associated with the ValueType. For example, “Accelera-
tion”, “Mass”, “Length”, etc.
132 SysML Specification v. 1.0 alpha

• unit: String Specifies the unit of the ValueType. For example, m/s^2, kg, m.

• dimension: String Specifies the dimention of the ValueType. For example, L (length), M (for mass),
T (for time), Q (for Charge), K (for Kelvin) or combinations of these such as L/
M^2 which is the dimension of Acceleration.

Notation

[1] The notation for a ValueType is the same as the notation for Block, except that the keyword «valueType» is shown before
the name.

18.4.2 Diagram extensions

N/A

18.5 Usage examples
Figure 18-3 shows the Block Definition diagram for a Transmission. Also shown is the definition of a ValueType
“Torque” with quantity, unit and dimension specified. The emTorque, iceTorque and outTorque are ValueProperties typed
by the ValueType Torque. The Transmission also has ValueProperties mass and speed. These properties are typed by
Kilograms and KPH, respectively. Kilometers and KPH are two pre-defined ValueTypes available in the SysML non-
normative library. See See Appendix D for a complete list of predefined ValueTypes. Note that the primitive Real is also
pre-defined in SysML. See Chapter 17, “Types”.

Figure 18-3. Block Definition diagram: Transmission properties

Block Definition Diagram: Transmission Properties

mass:Kilograms
dir:Direction
speed:KPH=0
emTorque:Torque
iceTorque:Torque
outTorque:Torque
inRPM:Real=0
outRPM:Real=0

«block»
Transmission

«primitive»
Real

«valueType»
quantity=”Torque”
unit=”N*m”
dimension=”ML^2/T^2”

«valueType»
Torque
SysML Specification v. 1.0 alpha 133

Figure 18-4 shows the Internal Block diagram for the Transmission. This diagram states that the speed, mass and
outTorque properties are owned by the Transmission by composition (i.e. they are parts of the transmission). In addition,
the mass property of the transmission is a DistributedValue with a Gaussion probability distribution and mean of 100 kg
and variance of 2 kg.

Figure 18-4. Internal Block diagram: Transmission properties

Internal Block Diagram: Transmission Properties

«part, distributedValue»
mass:Kilograms

«part, value»
speed:KPH

«part, value»
outTorque:Torque

«distributedValue»
distribution=”Gaussian”
mean=100.0
variance=2.0
134 SysML Specification v. 1.0 alpha

19 Profiles & Model Libraries

19.1 Overview
The Profiles package specifies mechanisms that allow metaclasses from existing metamodels to be extended so that they can
be adapted for different purposes, such as customizing SysML for different platforms or domains. The Profiles mechanism is
intended to be architecturally compatible with the OMG UML 2.0 and Meta Object Facility (MOF) specifications.

Profiles cannot only be used to extend SysML, they can also can be used to restrict the language by selecting the subset of the
base metamodel that is required for the specific domain. For example, SysML does not require all of the UML metamodel. The
Language Architecture chapter describes the subset of UML that is included in SysML.

The following sections describe the abstract syntax, package structure, UML extensions, compliance levels and usage exam-
ples for Profiles and Model Libraries.
SysML Specification v. 1.0 alpha 135

19.2 Diagram elements

Table 4. Graphical nodes for Profilesa

a. In the above table, boolean properties can alternatively be displayed as BooleanPropertyName=[True|False].

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Stereotype UML::Profiles::Stereotype Basic

Metaclass UML::Profiles::Class Basic

Profile UML::Profiles::Profile Basic

Model Library UML::StandardProfileL1 Basic

Table 5. Graphical paths for Profiles

PATH NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

«stereotype»
StereotypeName

«metaclass»
MetaClassName

«profile»
ProfileName

«modelLibrary»
LibraryName
136 SysML Specification v. 1.0 alpha

Extension UML::Profiles::Extension Basic

Generalization UML::Classes::Kernel::
Generalization

Basic

ProfileApplication UML::Profiles::
ProfileApplication

Basic

Unidirectional Associ-
ation

UML::Classes::Kernel::Asso-
ciation

Basic

Table 5. Graphical paths for Profiles

«metaclass»
MetaClassName

«stereotype»
StereotypeName

{required}

«stereotype»
StereotypeName

«stereotype»
StereotypeName

«apply»

propertyName
SysML Specification v. 1.0 alpha 137

Table 6. Graphical nodes for Profiles

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Model Element UML::Classes::Kernel::Element Basic

Model Element UML::Classes::Kernel::Element Basic

Model Element UML::Classes::Kernel::Element Basic

Model Element UML::Classes::Kernel::Element Basic

Model Element UML::Classes::Kernel::Element Basic

Element
Name

«stereotypeName»
PropertyName=ValueString
MultiPropertyName=ValueString, ValueString
BooleanPropertyName

Element
NamePathName

Element
Name

«stereotypeName»
PropertyName=ValueString
MultiPropertyName=ValueString, ValueString
BooleanPropertyName

«stereotypeName»
{PropertyName=ValueString;

BooleanPropertyName}
NodeName

«stereotypeName»{PropertyName=ValueString}ElementName
«stereotypeName»{PropertyName=ValueString;
BooleanPropertyName}
ElementName

NodeName

Element
Name

Element
Name

«stereotypeName»
{PropertyName=ValueString;
BooleanPropertyName}PathName
138 SysML Specification v. 1.0 alpha

19.3 Package Structure
SysML does not add any new abstract syntax and so does not require an additional package.

19.4 UML extensions

19.4.1 Metaclass extensions

N/A

19.4.2 Diagram extensions

19.4.2.1 Stereotype

The values of a stereotype that has been applied to a model element can be shown in one of three ways:

• ·As part of a comment symbol tied to the symbol representing the model element

• ·In compartments of a graphic node representing the model element.

• ·Above the name string within a graphic node or before the name string otherwise. Note that a restricted form of this
notational option is simply just to show the stereotype name in guillemets.

In the case where a compartment or comment symbol is used, the user may elect to show the stereotype name in
guillemets before the name string in addition to in the compartment or comment.

The values of the stereotype properties are displayed as name/value pairs, thus:

<namestring>'='<valuestring>

If a stereotype property is multi-valued then the valuestring is displayed as a comma-separated list:

<valuestring>::=<value>{','<value>}

Certain values have special display rules:

• ·As an alternative to a name/value pair, when displaying the values of boolean properties diagrams may use the conven-
tion that if the namestring is displayed then the value is True, otherwise the value is False;

Model Element UML::Classes::Kernel::Element Basic

Table 6. Graphical nodes for Profiles

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

«stereotypeName»
 PropertyName=ValueString
 MultiPropertyName=ValueString,

ValueString
 BooleanPropertyName

«stereotypeName»
NodeName
SysML Specification v. 1.0 alpha 139

• ·If the value is the name of a NamedElement then optionally its qualifiedName can be used.

If compartments are used to display stereotype values then an additional compartment is required for each applied
stereotype whose values are to be displayed. Each such compartment is optionally headed by the name of the applied
stereotype in guillemets. Any graphic node that is not displayed as an icon may have these compartments.Graphic nodes
corresponding to the following SysML/UML concepts may have these compartments: any Classifier shown as a Class
Node; Property (and subclasses); a CallBehaviorAction, CallOperation Action, CentalBufferNode (or subclasses) or
ActivityParameterNode.

Within a comment symbol, or if displayed before/above the symbol's namestring, the values from a specific stereotype are
optionally preceded with the name of the applied stereotype within a pair of guillemets, which is useful if values of more
than one applied stereotype should be shown.

When displayed in compartments or comment symbol at most one name/value pair can appear on a single line. When
displayed above/before a namestring the name/value pairs are separated by semicolons and all pairs for a given stereotype
are enclosed in braces.

In Figure 19-5, a simple stereotype Clock is defined to be applicable at will (dynamically) to instances of the metaclass
Class and describes a clock software component for an embedded software system. It has description of the operating
system version supported, an indication of whether it is compliant to the POSIX operating system standard and a
reference to the operation that starts the clock.

Figure 19-6 shows how the stereotype Clock is applied to a class called StopWatch.

Figure 19-5. Defining a stereotype

Figure 19-6. Using a stereotype

«stereotype»
Clock

OSVersion:String
startOperation:Operation
POSIXCompliant:Boolean

«metaclass»
Class

«clock»
StopWatch
140 SysML Specification v. 1.0 alpha

When, two stereotypes, Clock and Creator, are applied to the same model element, as is shown in Figure 19-7., the
attribute values of each of the applied stereotypes can be shown in a comment symbol attached to the model element.

Figure 19-8. Other notational forms for showing values

In this case, AlarmClock is valid for OS version 3.4, is POSIX-compliant and has a starting operation called Start. The
compartment form of notation is shown on the left and the in-symbol form on the right (note that not all properties of
AlarmClock are shown on the right. Note that multiple stereotypes can be shown using these alternates also, either as
multiple compartments, or by grouping the values for a given stereotype after its stereotype indication.

19.5 Usage examples

19.5.1 Defining a Profile

Figure 19-9. Definition of a profile

Figure 19-7. Using stereotypes and showing values

Finally, the two alternate notational forms are shown..

«clock,creator»
StopWatch

Click()

«clock»
OSVersion=2.5
startOperation=Click
«creator»
name="Jones"
date="04-04-04"

 Start()

AlarmClock

«clock»
OSVersion="3.4"
startOperation=Start
POSIXCompliant=True

 Start()

«clock»
{POSIXCompliant}

AlarmClock

«profile»
SE Toolkit

«import»

«profile»
SysML
SysML Specification v. 1.0 alpha 141

In this example, the modeler has created a new profile called SE Toolkit, which imports the SysML profile, so that it can
build upon the stereotypes it contains. The SE Toolkit can extend those metaclasses from UML that the SysML profile
imports.

19.5.2 Adding Stereotypes to a Profile

Figure 19-10. Profile Contents

I
In the SE Toolkit, both the mechanisms for adding new stereotypes are used. The first, exemplified by configurationItem, is
called an extension, shown by a line with a filled triangle; this relates a stereotype to a reference (or base) class, in this case
NamedElement from UML and adds new properties that every NamedElement stereotyped by configurationItem must have.
NamedElement is an abstract class in UML so it is its subclasses that can have the stereotype applied. The second mechanism
is demonstrated by the system and context stereotypes which are sub-stereotypes of an existing SysML stereotype, assembly;
sub-stereotypes inherit any properties of their super-stereotype (in this case none) and also extend the same base class or
classes. Note that TypedElements whose type is extended by «system» do not display the «system» stereotype; this also
applies to InstanceSpecifications. Any notational conventions of this have to be explicitly specified in a diagram extension.

T
There is also an example of how stereotypes (i.e., FunctionalRequirement) can have unidirectional associations to metaclasses
in the reference metamodel (in this case Behavior).

«profile»
 SE Toolkit

«metaclass»
NamedElement

«stereotype»
ConfigurationItem

author: String
version: String
lastChanged: Date

«stereotype»
Assembly

«stereotype»
System

«stereotype»
Context

«stereotype»
Requirement

«stereotype»
Functional

Requirement

«metaclass»
Behavior

function
142 SysML Specification v. 1.0 alpha

19.5.3 Defining a Model Library that uses a Profile

Figure 19-11. Model libraries example

The model library SI Unit Types imports the model libraries Quantities and SI Units from SysML, so that it can use model
elements from them in its own definition. It defines subtypes of Quantity (as subset of which are shown here) that can be used
when property values are measuresd in SI Units. A further model library, Physical, imports the SI Unit types so that it can
define properties that have those types. One model element, PhysicalObject is shown, an assembly that can be used as a super-
type for an physical object.

19.5.4 Guidance on whether to use a Stereotype or Class

This section provides guidance on when to use stereotypes. Stereotypes can be applied to any model element. Stereotyp-
ing a model element allows the model element to be identified with the «guillemet» notation. In addition, the sterotyped
model element can have stereotype properties, and the stereotype can specify constraints on the model element.

The modeler must decide when to create a stereotype of a class versus when to specialize (subclass) the class. One reason
is to be able to identify the class with the «guillemet» notation. In addition, the stereotype properties are different from proper-
ties of classes. Stereotype properties represent properties of the class that are not instantiated and therefore do not have a
unique value for each instance of the class.

SE Toolkit::functionalRequirement, which extends Class through its superstereotype, Requirement, is an example where a
stereotype is appropriate because every modeling element stereotyped by SE Toolkit::functionalRequirement has a reference
to another modeling element. In another example, SE Toolkit::configurationItem defined above, which applies to classes
amongst other concepts, is a stereotype because its properties characterise the author, version and last changed date of the
modeling element themselves. One test of this is whether the new properties are inheritable; in this case author, version and
last-changed date are not, because it is only those classes under configuration control that need the properties. To summarise,
in the following circumstances a stereotype is appropriate:

«modelLibrary»
SI Unit Types

«import»

«modelLibrary»
Quantities

«dataType»
Quantity

dimension: Dimension
= VolumeDim {redefines
dimension, readOnly}

«dataType»
Volume

unit: Unit = KgPerM3
{redefines unit,
readOnly}

«dataType»
SIDensity

unit: Unit = M3
{redefines unit, readOnly}

«dataType»
SIVolume

dimension: Dimension
= DensityDim {redefines
dimension, readOnly}

«dataType»
Density

«modelLibrary»
Physical

dimension: Dimension
= LengthDim {redefines
dimension, readOnly}

«dataType»
Length

unit: Unit = M
{redefines unit,
readOnly}

«dataType»
SILength

«import»

density: SIDensity
volume: SIVolume
supplier: String
modelNumber: String
serialNumber: String
lotNumber: String

«assembly»
PhysicalObject

«modelLibrary»
SI Units

«import»
SysML Specification v. 1.0 alpha 143

• Where the model concept to be extended is not a class or class-based;

• Where the extensions include properties that reference other model elements;

• Where the extensions include properties that describe modeling data, not system data;

An example where a class is more appropriate is PhysicalObject from Figure 19-11. In this case, the properties density
and volume, and the component numbers, have distinct values for each system element described by the class, and are inher-
ited by every subclass of PhysicalObject.

19.5.5 Using a Profile

Figure 19-12. A model with applied profile and imported model library

My SE Model is a system engineering model that needs to use stereotypes from SysML. It therefore needs to have the
SysML profile applied to it. In order to use the predefined SI units, it also needs to import the SI Unit Types model library.
Having done this, elements in My SE Model can be extended by SysML stereotypes and types like SIVolume can be used to
type properties.

19.5.6 Using a Stereotype

Figure 19-13. Using two stereotypes on one model element

StoppingDistance has two stereotypes applied, functionalRequirement, that identifies it as a requirement that is satisfied
by a function, and configurationItem, which allows it to have configuration management properties. The modeler has provided
values for all the newly available properties; those for criticalRequirement are shown in a compartment in the node symbol for
StoppingDistance; those for configurationItem are shown in a separate note.

«modelLibrary»
SI Unit Types

«apply»

«profile»
SysML

My SE Model
«import»

«apply»

«functionalRequirement»
«configurationItem»

StoppingDistance
«functionalRequirement»

text="The car must stop within
100 feet from 20 mph"
id="102.1"
function=StopCar

«configurationItem»
author="Jones"
version="1.2"
date="04-04-04"
144 SysML Specification v. 1.0 alpha

19.5.7 Using a Model Library Element

Figure 19-14. Using model library elements

circumference: SILength

«assembly»
Shot

density: SIDensity
volume: SIVolume
supplier: String
modelNumber: String
serialNumber: String
lotNumber: String

«assembly»
PhysicalObject
SysML Specification v. 1.0 alpha 145

146 SysML Specification v. 1.0 alpha

Part V - Appendices
This section contains non-normative appendices for this specification.
SysML Specification v. 1.0 alpha 147

148 SysML Specification v. 1.0 alpha

Appendix A.Diagrams

A.1 Overview.
A SysML diagram taxonomy is shown in Figure A-1. SysML reuses, extends and adds to UML diagram types as follows:

• UML diagrams that are reused, but are not extended: Use Case diagram, Sequence diagram, and State Machine dia-
gram.

• UML diagrams that are reused and extended: Activity diagram (extends UML Activity diagram), Block Definition dia-
gram (extends UML Class diagram), Internal Block diagram (extends UML Composite Structure diagram), and Pack-
age diagram (extends UML Package diagram).

• New diagram types1: Parametric Constraint diagram, Allocation diagram/Allocation Traceability Table2, and Require-
ments diagram.

Figure A-1. SysML Diagram Taxonomy

1. The diagrams in this category could also be categorized as UML diagrams that are reused and extended, since
these diagrams are constructed using a profile extension (cf. defining entirely new diagram semantics using a
metamodel extension). However, after extensive experience with SysML prototypes that implement these dia-
grams, we believe that their innovations are sufficiently significant that they should be considered new diagram
types.

2. Allocations can be represented in both graphic and tabular format, where the latter is referred to as an Allocation
Traceability Table. See “Table extensions” on page 111 in the “Allocations” on page 107.

SysML Diagram

Structure
Diagram

Behavior
Diagram

Use Case
Diagram

Activity
DiagramBlock Diagram

Parametric
Constraint
Diagram

Sequence
Diagram

State Machine
Diagram

Cross-Cutting
Diagram

Allocation
Diagram

Requirement
Diagram

Package
Diagram

Block Definition
Diagram

Internal Block
Diagram

Parametric
Constraint
(Definition)

Diagram

Parametric
Constraint Use

Diagram
SysML Specification v. 1.0 alpha 149

These diagrams are described in detail in the following chapters of this specification:

• Structure diagrams3

• Block diagram
•Block Definition diagram: See Chapter 8, “Blocks”
•Internal Block diagram: See Chapter 8, “Blocks”

• Parametric Constraint diagram
•Parametric Constraint (Definition) diagram: See Chapter 9, “Parametric Constraints”
•Parametric Constraint Use diagram: See Chapter 9, “Parametric Constraints”

• Behavior diagrams

• Activity diagram: See Chapter 10, “Activities”

• Sequence diagram: See Chapter 11, “Sequences”

• State Machine diagram: See Chapter 12, “State Machines”

• Use Case diagram: See Chapter 13, “Use Cases”

• Cross-Cutting diagrams

• Allocation diagram: See Chapter 15, “Allocations”

• Requirement diagram: See Chapter 14, “Requirements”

• Package diagram: See Chapter 16, “Model Management”

• Sequence diagram: See Chapter 11, “Sequences”

3. The subtypes of Block and Parametric Constraint diagrams reflect the definition/usage dichotomy of the structural
constructs. See Part II - “Structural Constructs”.
150 SysML Specification v. 1.0 alpha

Appendix B. Sample Problem

B.1 Overview
The purpose of this appendix is to provide a comprehensive example that illustrates how SysML supports the specification,
analysis, design and verification of a system using some of the basic and advanced features of the language.

The intent of this sample problem is to provide a sufficent number of related sample diagrams (at least one for every SysML
diagram type) to demonstrate how the SysML diagram types complement each other, and to highlight how model elements in
different diagrams are subject to architectural integrity rules (cf. language well-formedness rules). These diagrams that com-
prise this sample problem were extracted from a working model that was developed during the prototyping phase of SysML
development, and is fully executable. If you are interested in obtaining an executable version of the sample problem, see
Section 5.1, “Support Documents,” on page 8.

The sample problem does not highlight all of the features of the language. The reader should refer to the individual chap-
ters for more detailed descriptions of all features of the language. The diagrams shown were selected for representing a partic-
ular aspect of the model, and the ordering of the diagrams is meant to be representative of a typical systems engineering
process, but we are not recommending any particular method or approach here.

B.2 Problem Summary
The sample problem describes the the development of a Hybrid Sports Utility Vehicle (SUV) system. The problem is derived
from a marketing analysis which indicated the need to increase the fuel economy and “eco-friendliness” of the vehicle from its
current capability without sacrificing performance. Only a small subset of the functionality and associated vehicle system
requirements and design are addressed to highlight this application.

B.3 Diagrams

B.3.1 Requirements Diagram for the “Hybrid SUV”

A portion of the high level user requirements for the Hybrid SUV are shown in the Requirement diagram of Figure B-1. Three
presentation options for requirements are shown in the diagram: the Hybrid SUV requirement is shown as a Requirement sym-
bol with the contents of the compartments elided (not shown); the Load, Eco-Friendliness, Emissions, Performance and Fuel
Economy requirements are shown as a Requirement symbol displaying the «requirement» properties in a compartment; and
the remaining elements are shown as Requirement symbols with all compartments elided.

The requirement properties shown (for example in the Performance requirement) include the standard SysML require-
ment properties “id”, “source”, “text”, “kind”, “verifyMethod” and “risk”. The following default, user defined literals for the
enumeration types have been defined in the Appendix D, “Non-Normative Model Library”:

• RequirementKind = {Functional, Performance, Interface}

• VerifyMethodKind={Analysis, Demonstration, Inspection, Test}

• RiskKind={High, Medium, Low}

Additional user defined properties and/or enumeration literals could be added. See the Chapter 19, “Profiles & Model
Libraries” chapter for information on customizing model elements in order to add user defined properties or enumeration liter-
als.
SysML Specification v. 1.0 alpha 151

It is important to recognize that not all information from the model must be shown on a diagram. The intent is to highlight
points of interest. In this particular example, the Fuel Economy, Emissions, Performance and Range requirements are consid-
ered key requirements and will be the focus of further discussion.

B.3.2 Trade Study and Measures of Effectiveness

Trade studies are a basic activity for many system engineers. Given a set of requirements, it is frequently problematic to satisfy
all requirements. Consequently, trade-offs must be made to arrive at a design that is optimal in a global sense. For example,
maximizing the horsepower of the internal combustion engine will contribute to enhanced performance at the cost of fuel effi-
ciency, emissions and range.

In order to determine this “global optimum” one typically uses a set of “Measures of Effectiveness” (MoE), which repre-
sent the criteria by which alternative designs or architectures are assessed. These MoEs are derived from a small subset of the
requirements that are considered critical and are associated with a similarly small set of Key Performance Parameters (KPP)
that determine the resulting effectiveness.

Figure B-2 shows the set of MoEs for the sample problem using the «effectiveness» model element. The MoEs form a
hierarchy with the overall Measure of Effectiveness at the root of the tree. Each MoE has attributes to capture the normalized
score for the design alternative being investigated (score:Real) as well as a relative importance of the MoE (weight:Real). The
sum of the weights of all MoEs at any given level in the hierarchy must sum to 100. The normalization of the raw scores for a
given design alternative is done using utility curves (sometimes called value functions, since they yield a resulting value for a

Figure B-1. Requirement Diagram:Top-Level User Requirements

Requirement Diagram: Top-Level User Requirements

«requirement»
HybridSUV

«requirement»
id =”UR1.1"
source = “Marketing”
text = “Load”
kind = “Functional”
verifyMethod =”Test”
risk =”Low”

«requirement»
Load

«requirement»
id =”UR1.2"
source = “Marketing”
text = “Eco-Friendliness”
kind = “Performance”
verifyMethod = ”Analysis”
risk = ”High”

«requirement»
Eco-Friendliness

«requirement»
id = ”UR1.3"
source = “Marketing”
text = “Performance”
kind = “Performance”
verifyMethod =”Test”
risk =”Medium”

«requirement»
Performance

«requirement»
Ergonomics

«requirement»
Passengers

«requirement»
Cargo

«requirement»
FuelCapacity

«requirement»
id = ”UR1.2.1"
source = “Marketing”
text = “The car shall meet 2010 Kyoto
Accord emissions standards.”
kind = “Performance”
verifyMethod =”Test”
risk =”Medium”

«requirement»
Emissions

«requirement»
id = “UR1.3.1”
source = “Marketing”
text = “Users shall obtain fuel
economy better than that provided
by 95% of cars built in 2004.”
kind = “Performance”
verifyMethod = “Test”
risk = “High”

«requirement»
FuelEconomy «requirement»

Range

«requirement»
Braking

«requirement»
Power

«requirement»
Acceleration

UR1.1 UR1.4

UR1.1.1

UR1.1.2

UR1.1.3

UR1.2.1

UR1.3.5

UR1.3.2

UR1.3UR1.2

UR1.3.1 UR1.3.3

UR1.3.4
152 SysML Specification v. 1.0 alpha

given raw input). These utility curves map the raw values of a MoE, for example the time to accelerate from 0 to 60 mph, to a
value between 0 and 100 which may then be weighted according to the relative importance and aggregated, or rolled-up to
yield the overall score. Our goal is to maximize the Overall MoE.

Figure B-3 shows the KPPs for the sample problem. Given the set of MoEs one can determine which parameters will
influence the outcome. In this case the KPPs are the total mass of the vehicle, the displacement of the internal combustion
engine, the horsepower of the electric motor, the capacity of the fuel tank, the energy density of the battery pack, and the coef-
ficient of drag of the chassis/body design.

Figure B-2. Measures of Effectiveness for the Hybrid SUV

Requirement Diagram: Measures of Effectiveness

«effectiveness»
id =”MoE1"
text = “Aggregate measure of effectiveness”
optimizationDirection = maximize

score:Real
Weight:Real = 100

«effectiveness»
Overall

«effectiveness»
id =”MoE1.1"
text = “Acceleration aggregate”
optimizationDirection = maximize

score : Real
weight : Real = 40

«effectiveness»
Acceleration

«effectiveness»
id =”MoE1.2"
text = “Fuel Economy”
optimizationDirection = maximize

score : Real
weight :Real = 30

«effectiveness»
FuelEconomy

«effectiveness»
id =”MoE1.3"
text = “Emissions”
optimizationDirection = minimize

score : Real
weight : Real = 10

«effectiveness»
Emissions

«effectiveness»
id =”MoE1.4"
text = “Range”
optimizationDirection = maximize

score : Real
weight : Real = 20

«effectiveness»
Range

«effectiveness»
id =”MoE1.1.1"
text = “time to 60 mph”
optimizationDirection = maximize

score : Real
weight : Real = 60

«effectiveness»
time0to60

«effectiveness»
id =”MoE1.1.2"
text = “measures passing ability”
optimizationDirection = maximize

score : Real
weight : Real = 40

«effectiveness»
time60to100

MoE1.1 MoE1.2 MoE1.3 MoE1.4

MoE1.1.1 MoE1.1.2
SysML Specification v. 1.0 alpha 153

Figure B-4 shows the relationship between the KPPs and the Acceleration MoE in the form of a parametric diagram. The
parametric constraint usages (for example disp2hp:Disp2HP) specify how the various KPPs are combined to yield the normal-
ized scores for the Acceleration MoE. The actual constraint equations, shown in this diagram in the constraint note, are part of
the definition of the parametric constraints (see Figure B-5). By separating the constraint definition from it’s usage in a partic-
ular context, one can develop a library of re-usable constraints. For example, Newton’s Law (as specified by the constraint
Newton) would likely be re-used many times.

Similar parametric diagrams would be created for each of the remaining MoEs to specify the relationship between the
KPPs and the normalized score of the associated MoE.

Figure B-3. Key Performance Parameters for the Hybrid SUV

Internal Block Diagram: Key Performance Parameters

::SUV::Blocks::HybridSUV::mass

::SUV::Blocks::ElectricMotor::maxHP

::SUV::Blocks::BatteryPack::energyDensity

::SUV::Blocks::FuelTank::capacity

::SUV::Blocks::Chassis::dragcoef

::SUV::Blocks::InternalCombustionEngine::displacement
154 SysML Specification v. 1.0 alpha

Figure B-5 shows the definition of the parametric constraint for Newtons Law used in Figure B-4. Parametric constraints
are defined using Internal Block Diagrams to describe the parameters (roles) and the constraints that apply to them. The defi-
nitions of the other simple constraints in Figure B-4 (Sum2Real, Disp2HP, HP2Force) are similar and are not shown.

These definitions may be placed in a model library and reused.

The types Newtons, Kilograms, and MetersPerSec2 used in Figure B-5 are pre-defined value types which are type com-
patible with the pre-defined data type Real. See Appendix D, “Non-Normative Model Library” for pre-defined value types.

Figure B-4. Usage of constraints to map KPPs to MoE scores for Acceleration MoE

Parametric Diagram: Acceleration Parametric Relations

::SUV::Blocks::HybridSUV::mass

::SUV::Blocks::ElectricMotor::maxHP

::SUV::Blocks::InternalCombustionEngine::displacement

::SUV::Trade Study 13-25::Trade StudyContext::t0to60::score

::SUV::Trade Study 13-25::Trade StudyContext::t60to100::score

role1

«binding» hp
role2

«binding»
displacement

«binding»

total

hp

«binding»

force

force«binding»

mass

«binding»

accelerationa

«binding»

t1norm

«binding»

t2norm

«binding»

{total=role1+role2}

{hp=k3*displacement} {force = hp/k1}

{force = mass*acceleration}

Composite constraint that integrates acceleration and
computes normalized score for t0to60 and t60to100

«parametricUse»
maxHP:Sum2Real

«parametricUse»
disp2hp:Disp2HP

«parametricUse»
hp2force:HP2Force

«parametricUse»
accel:Newton

«parametricUse»
a2score:IntegrateAndNormalize
SysML Specification v. 1.0 alpha 155

The composite constraint IntegrateAndNormalize shown in Figure B-4 re-uses two other constraints and has been
included to illustrate the process of defining more complex constraints and the scaleability of the approach.

Figure B-6 is a Block Definition diagram that states that the IntegrateAndAccelerate constraint is composed of two para-
metric constraints: Integrate, and Normalize.

Figure B-5. Constraint definitions for Newton’s Law

Internal Block Diagram: Newton

force:Newtons

acceleration:MetersPerSec2

mass:Kilograms

{force=mass*acceleration}
156 SysML Specification v. 1.0 alpha

Figure B-7 shows the corresponding Internal Block Diagram for the IntegrateAndNormalize composite constraint show-
ing the internal relationships between the parameters (roles) and component constraints. Note that not all parameters are
exposed at the composite level. For example, only the parameters “a” (which represents the variable to be integrated) and
t1norm and t2norm (which represent the normalized times) are bound to properties in Figure B-4. The other roles internal to
the component parametric constraints are hidden at the top level.

The types MetersPerSec2, and Seconds used to type the parameters are pre-defined value types which are type compatible
with the data type Real. See Appendix D, “Non-Normative Model Library” for a list of pre-defined value types.

Figure B-7 also highlights the fact that a parametric constraint block may contain more than one constraint. Each of the
component constraints in this figure has two constraint equations. The definition of these simple component constraints would
be done as in Figure B-5 and is left as an exercise for the reader.

Figure B-6. Block Definition diagram of composite parametric constraint IntergrateAndNormalize

Block Definition: IntegrateAndNormalize

«parametric»
IntegrateAndNormalize

«parametric»
Integrate

«parametric»
Normalize

int uc1
SysML Specification v. 1.0 alpha 157

In summary, each MoE would have a set of constraints which specify how one would compute the normalized score from
the relevant KPPs (similar to Figure B-4). These normalized scores would then be used, in conjunction with the weight defined
for the MoE, to arrive at an overall measure of effectiveness for the given values of the KPPs in accordance with Figure B-2.
Following this process, one can view the KPPs as the “nobs” that one can “adjust” in order to maximize the overall MoE.

B.3.3 Requirements Derivation

Following engineering analysis of the user requirements a set of system requirements are derived. Figure B-8 shows a portion
of the derived requirements focusing on the key user requirements concerning Fuel Economy and Emissions.

In particular, the system requirement PowerSourceSelection is derived from the Fuel Economy, Emissions, Acceleration,
and Range user requirements. “Trade study 13-25” is listed as the source of this requirement. The Regenerative Braking sys-
tem requirement is derived from the Fuel Economy, Braking and Range user requirements. The same trade study is listed as
the source of the Regenerative Braking requirement.

Figure B-7. Internal Block diagram of composite parametric constraint IntergrateAndNormalize

Internal Block Diagram: IntegrateAndNormalize

x «binding»

t1

t1

«binding»

t1norm

«binding»

t2norm

«binding»

«parametric»
int:Integrate

«parametric»
uc1:Normalize

a:MeterPerSec2

t2

t2

«binding»

{t1=time(integrate(x))=60} {t2=(time(integrate(x))=100)-t1}

t1norm:Seconds

t2norm:Seconds

{If(t1>=15) then
 t1norm=0
elseif(10<=t1<=15) then
 t1norm=300-t1*100/5
else
 t1norm=100
endif}

{If(t2>=15) then
 t2norm=0
elseif(10<=t2<=15) then
 t2norm=300-t2*100/5
else
 t2norm=100
endif}
158 SysML Specification v. 1.0 alpha

Figure B-8 also shows an alternative presentation option for requirement properties, the comment symbol in the upper
right hand corner anchored to the FuelEconomy requirement. Only the id and text properties are shown as it is possible to
elide (not show) properties in a comment symbol as well.

B.3.4 Requirements Verification

Figure B-9 shows a requirements diagram capturing the verification planning for the key system requirement to provide regen-
erative braking.

This diagram indicates that the verification procedure for Regenerative Braking is specified by the ConverKineticToElec-
trical interaction (sequence diagram) and the ConvertKinetic activity. Both these model elements are also stereotyped as a
«testCase» which implies they will return a verdict.

Requirements may be verified by behaviors (interactions, statemachines or activities) or other procedural specifications.

Figure B-8. Requirement Diagram:Requirements Derivation

Requirements Diagram: Requirement Derivations

«requirement»
::HybridSUV::Performance ::FuelEconomy

«requirement»
::HybridSUV::Performance ::Braking

«requirement»
id : =”SR3.5.5"
source = “Trade Study 13-25”
text:String = “The vehicle shall convert kinetic energy to
electrical energy to recharge the battery and provide
additional braking capability.”
reqType:String = “Functional”
verifyMethod =”Test”
risk = ”medium”

«requirement»
Regenerative Braking

«derive»

«derive»

«requirement»
id: “SR3.5.1”
source: “Trade Study 13-25”
text = “If the vehicle velocity is below 10 km/h the electric motor shall be used as the
sole power source. If the vehicle velocity is between 10 km/h and 50 km/h the internal
combustion engine shall be used as the sole power source. If the velocity of the vehicle
is greater than 50 km/h the electric motor and internal combustion engine shall both be
used as power sources.”
reqType = “Functional”
risk = “medium”

«requirement»
PowerSourceSelection

«requirement»
::HybridSUV::Eco-Friedliness::Emissions

«derive»

«derive»

«requirement»
::HybridSUV::Performance::Range

«requirement»
::HybridSUV::Performance::Acceleration

«requirement»
id = “UR1.3.1”
text = “Users shall obtain fuel economy better than that
provided by 95% of cars built in 2004.”

«derive» «derive»

«derive»
SysML Specification v. 1.0 alpha 159

B.3.5 Use Case Diagram

Figure B-10 shows the use case diagram for Hybrid SUV. The top level “Drive” use case is decomposed using «include» use
cases. The subject (the HybridSUV) and the actors (Driver, Maintenance, IsuranceService and DMV) interact with the system
to realize the use case.

This diagram aids in analysis by establishing the scope and context of the system under development (:HybridSUV), iden-
tifying key external entities (people, external systems, etc.) that interact with the system along with the associated external
interfaces, and providing the initial high level decomposition of behavior according to key system threads or scenarios.

Like any other model element, traceability to the driving requirements can be established using «satisfies» relationships
(see Section B.3.15).

One example of re-use, the fact that the Brake use case is included in the Park and Drive use cases, is shown.

Figure B-9. Requirement Diagram:Requirements Verification

Requirement Diagram: Requirement Verification

«interaction, testCase»
::SUV::Tests::ConvertKineticToElectrical

«requirement»
Regenerative Braking

«verify»

«activity, testCase»
::SUV::Tests::ConvertKinetic

«verify»
160 SysML Specification v. 1.0 alpha

B.3.6 Sequence Diagrams

Figure B-11 shows a “black-box” sequence diagram describing the “Drive Car” use case. The diagram is considered a “black-
box” diagram as it shows a single lifeline for the Hybrid SUV and does not show any internal parts. The diagram has interac-
tion occurrences for each of the «included» use cases of Figure B-10 and shows a time ordering of executions (other time
orderings are possible, i.e. this is a partial specification of behavior).

Figure B-10. Use Case Diagram

Use Case Diagram: Top-Level Use Cases

Driver

 Drive

 Park

 Maintain

 Insure

 Register

 Start

 SelectGear

 Accelerate

 Steer

 Brake

Maintenance

InsuranceService

DMV

«include»

«include»

«include»

«include»

«include»

«include»

:HybridSUV
SysML Specification v. 1.0 alpha 161

Figure B-12 shows the details of the Accelerate interaction occurrence. When the :Driver presses the accelerator the :Hybrid-
SUV receives the ApplyAccelerator message with a parameter: “angle”. In response to this event, the :HybridSUV performs
its ControlPower activity.

This is still a “black-box” view of the system, however the “ref: Accelerate Allocate” text on the :HybridSUV lifeline,
known as a part decomposition, indicates that a white-box (or allocated) view exists that shows the internal interactions of the
:HybridSUV for this scenario.

Figure B-11. Sequence Diagram: Top Level “black-box”

Sequence Diagram: Drive Car

«actor»
:Driver

«subject»
:HybridSUV

ref Accelerate

ref SelectGear

ref Brake

ref Steer

ref Start
162 SysML Specification v. 1.0 alpha

Figure B-12. Sequence Diagram: Accelerate Scenario

Sequence Diagram: Accelerate

«actor»
Driver

«subject»
HybridSUV ref ‘Accelerate Allocated’

ApplyAccelerator(angle)

ControlPower(fuel, lac);
SysML Specification v. 1.0 alpha 163

Figure B-13 shows the “white-box” sequence diagram for the Accelerate scenario. The choice of Activity Diagrams (see
next section), Sequence Diagrams, or a combination of the two for defining scenarios is a matter of personal taste. Of course a
diagram with this level of detail cannot be created until candidate parts (units, subsystems, etc. of the equipment breakdown
structure) have been identified. See Section B.3.8 for the Block Definition diagram describing the blocks referenced in Figure
B-13.

Figure B-13. Sequence Diagram: Accelerate Scenario allocated to components of Hybrid SUV

Sequence Diagram: Accelerate Allocated

«actor»
driver

«block»
ecu1 : EngineControlUnit

«block»
ice1 : InternalCombustionEngine

«block»
em1 : ElectricalMotor

«block»
t1 : Transmission

«block»
fwa : FrontWheelAxel

«block»
leftfw : FrontWheel

«block»
rightfw : FrontWheel

«block»
i1 : Inverter

«block»
bp1 :BatteryPack

«block»
ft1 : FuelTank

[10<speed <=50]

[Speed > 50]

 Alt [speed <=10]

ApplyAccelerator
(angle)

TransCmd_getSpeed()

TransData(speed)

EMCmd_RPM(des_rpm, cur_rpm)
Idc(idc)

Iac(iac)

Torque(torque)

Torque(torque)
Torque(torque)

Torque(torque)

ICECmd_RPM(des_rpm, cur_rpm)
Fuel(fuel)

Torque(torque)
Torque(torque)

Torque(torque)

Torque(torque)

EMCmd_RPM(des_rpm, cur_rpm)
Idc(idc)

Iac(iac)
Torque(torque)

Torque(torque)
Torque(torque)

Torque(torque)ICECmd_RPM(des_rpm, cur_rpm)
Fuel(fuel)

Torque(torque)
Torque(torque)

Torque(torque)

Torque(torque)
164 SysML Specification v. 1.0 alpha

B.3.7 Activity Diagram for “Control Power”

Figure B-14 through Figure B-17 shows the Activity Diagram for the ControlPower Activity shown on Figure B-12. These
diagrams are fully elaborated, including partitions, commonly called “swim-lanes” to illustrate the allocation of behavior to
structure. The initial versions of these diagram may not have partitions, but would rather focus on behavior alone. Once the
equipment breakdown structure is defined, partitions may be added or explicit allocation can be performed (see Section B.3.10
for more on explicit allocations).

Note that many of the elements displayed on these diagrams are representations of the same model element shown on
other diagrams. for example the ApplyAccelerator SendSignalAction is the same underlying model element as the message
ApplyAccelerator on Figure B-12 and Figure B-13.

The circles with letters inside represent off page connectors used to connect flows across pages of large diagrams.

Figure B-14. Activity Diagram Example: Control Power (1 of 4)

Activity Diagram: Control Power (1 of 4)

Driver EngineControlUnit InternalCombustionEngine ElectricMotor Transmission

ApplyAccelerator(angle) Calc Desire vel

A

TransCmd_getSpeed()

Calc Reg RPM

Cur_vel

TransData(Cur_vel)

Meas Current vel

D

[Cur_vel > 50.0]

C
[10.0<Cur_vel<= 50.0]

B
[Cur_vel<=10.0]
SysML Specification v. 1.0 alpha 165

Figure B-15. Activity Diagram Example: Control Power (2 of 4)

Activity Diagram: Control Power (2 of 4)

EngineControlUnit ElectricMotor Transmission FrontWheelAxel FrontWheel FrontWheel

lac :ACCurrent

B

EMCmd_RPM
(des_rpm, cur_rpm) Prod_Torque

A

ldc:DCCurrent

Amplify_Torque

Split_Torque

Provide_Traction

Provide_Traction

t:Torque

t:Torque

«continuous»

t:Torque

t:Torque

«continuous» t:Torque

t:Torque t:Torque

t:Torque

«continuous»

«continuous»

«continuous»
166 SysML Specification v. 1.0 alpha

Figure B-16. Activity Diagram Example: Control Power (3 of 4)

Activity Diagram: Control Power (3 of 4)

EngineControlUnit InternalCombustionEngine Transmission FrontWheelAxel FrontWheel FrontWheel

fuel :Fuel

C

ICECmd_RPM
(des_rpm, cur_rpm) Prod Torque

A

fuel: Fuel

«continuous»

t:Torque

«continuous»

Amplify_Torque

Split_Torque

Provide_Traction

Provide_Traction

t:Torque

t:Torque

t:Torque

«continuous» t:Torque

t:Torque t:Torque

t:Torque

«continuous»

«continuous»
SysML Specification v. 1.0 alpha 167

Figure B-17. Activity Diagram Example: Control Power (4 of 4)

Activity Diagram: Control Power (4 of 4)

EngineControlUnit ElectricMotor Transmission FrontWheelAxel FrontWheel FrontWheel

lac :ACCurrent

«continuous»

EMCmd_RPM
(des_rpm, cur_rpm)

Prod_Torque

ldc:DCCurent

InternalCombustionEngine

fuel: Fuel «continuous»

Prod_Torque

fuel: Fuel

ICECmd_RPM
(des_rpm, cur_rpm)

A

D

t1:Torque

t2: Torque

«continuous»

«continuous»

Combine_Torque
t2:Torque

t1:Torque

t:Torque

Amplify_Torque

Split_Torque

Provide_Traction

Provide_Traction

t:Torque

t:Torque

«continuous» t:Torque

t:Torque t:Torque

t:Torque

«continuous»

«continuous»

t:Torque

«continuous»
168 SysML Specification v. 1.0 alpha

B.3.8 External Block Diagram for the Hybrid SUV

Figure B-18 shows the external Block Diagram of the HybridSUV. This diagram defines the equipment breakdown structure
of the vehicle.

All block properties are elided (not shown) as the intent of this diagram is to simply depict the part hierarchy.

Note that the Block FrontWheel plays two roles in the EBS, that of the left front wheel (leftfw) and that of the right from
wheel (rightfw). Similarly, their are two RearWheel as indicated by the multiplicity of 2. If multiplicities are unspecified they
default to 1, for example there is only one BrakingSubsystem in any given HybridSUV.

A Hybrid SUV has a Braking Subsystem, a Power Subsystem and a Chassis Subsystem. The units that compose the Brak-
ing Subsystem and Chassis Subsystem are not shown as the focus of this example is the Power Subsystem.

B.3.9 Transmission Properties

Figure B-19 shows the properties of the Transmission Block on a Block Definition diagram. A number of attributes, such
as mass:Kilograms, dir:Direction, etc. capture information about the state of the transmission. The types are defined else-
where, for example the ValueType Kilogram, which has associated dimension (=M), unit (=kg), and quantity (=Mass) is

Figure B-18. Block Definition Diagram: Equipment Breakdown Structure

Block Definition Diagram: Hybrid SUV Equipment Breakdown Structure

<<block>>
HybridSUV

<<block>>
BrakingSubsystem

<<block>>
PowerSubsystem

<<block>>
ChassisSubsystem

<<block>>
FuelTank

<<block>>
InternalCombustionEngine

<<block>>
FrontWheel

<<block>>
FrontWheelAxel

<<block>>
BatteryPack

<<block>>
Generator

<<block>>
ElectricalMotor <<block>>

RearWheel

<<block>>
RearWheelAxel

<<block>>
Transmission

<<block>>
Inverter

<<block>>
EngineControlUnit

pssbss css

rw2
ecu1

g1bp1

i1t1

fwaleftfwrightfw

rwa

ice1

em1

ft1
SysML Specification v. 1.0 alpha 169

defined in the SysML Model Library (see Appendix D). Similarly the ValueTypes Torque, KPH are defined in the SysML
Model Library.

Also shown are the operations, such as shift(), which were determined from the activities allocated to the Transmission
(see Figure B-20 for allocations). As a result of the allocations made in Figure B-20, this block has the stereotype «allocated»
applied. The “AllocatedFrom” property displayed in the stereotype property symbol indicates which activities have been allo-
cated to the transmission.

The ports (ServicePorts TJ1 and TJ2, and FlowPorts TS1, TS2 and TS3) and associated interfaces (fsTorque which is
defined in Figure B-24) are also shown, resulting in a complete specification of the block that can be re-used in other systems.

Figure B-19. Block Definition Diagram: Properties of Transmission

Block Definition Diagram: Transmission Properties

iTransCmds

iDriver

Shift(dir:Direction)
Meas_Cur_vel()
Combine_Torque(emTorque:Torque, iceTorque:Torque, outTorque:Torque)
Amplify_Torque(inTorque:Torque, outTorque:Torque)
ConfigRegen()

mass:Kilograms
dir:Direction
speed:KPH=0
emTorque:Torque
iceTorque:Torque
outTorque:Torque
inRPM:Real=0
outRPM:Real=0

«block, allocated»
Transmission

TS1:fsTorque TS2:fsTorque TS3:fsTorque

fsTorque::Torque fsTorque::Torque fsTorque::revTorque fsTorque::revTorque fsTorque::Torque

TJ1

iTransData

TJ2

iAxelCmds

«allocated»
AllocatedFrom = Shift, Meas_Cur_vel, Combine_Torque, Amplify_Torque, ConfigRegen
170 SysML Specification v. 1.0 alpha

B.3.10 Allocations

Figure B-20 shows an example of the explicit allocation of behavior to structure, in particular allocations to the Transmission.
The Activity diagrams of Figure B-14 through Figure B-17 showed implicit allocations of behavior to structure (function to
form) via partitions.

Each leaf activity from the activity model is allocated to one Block.

 Figure B-21 shows an alternate tabular presentation of the allocation traces in the model. This table could easily be gen-
erated by tools via queries on the model. Similar tables, for example verification matrices, could also be generated for other
trace types.

Figure B-20. External Block Diagram: Allocation of Behavior to the Transmission

Block Definition Diagram: Allocation of Activities to Transmission

«activity, allocated»
::SUV::Activities::ControlPower::Meas_Current_vel

«activity, allocated»
::SUV::Activities::ControlPower::Amplify_Torque

«activity, allocated»
::SUV::Activities::BrakeCar::ConfigRegen

«activity, allocated»
::SUV::Activities::SetGear::Shift

«block, allocated»
::SUV::Blocks::Transmission

«allocate»

«allocate»

«allocate»

«allocate»

«activity, allocated»
::SUV::Activities::BrakeCar::Combine_Torque

«allocate»
SysML Specification v. 1.0 alpha 171

Figure B-21. Example tabular format of allocation traces

Target Block

Source Activity EngineControlUnit InternalCombustionEngine Transmission FrontWheelAxel FrontWheel ElectricalMotor BrakingSubsystem Inverter BatteryPack

InitializeICE allocate

StartICE allocate

SwitchGear allocate

Shift allocate

Calc_Desire_vel allocate

Meas_Current_vel allocate

Calc_Req_RPM allocate

Amplify_Torque allocate

Split_Torque allocate

Provide_Traction allocate

Prod_Torque allocate

Prod_Torque allocate

Brake allocate

SetRegenBrake allocate

ConfigRegen allocate

Combine_Torque allocate allocate

GenerateAC allocate

RectifyCurrent allocate

StoreElectricalEnergy allocate

ConvertDCtoAC allocate
172 SysML Specification v. 1.0 alpha

B.3.11 Block Diagram

Figure B-22 shows the Internal Block diagram of the Power Subsystem

The diagram shows the following external interfaces of the PowerSubsystem connected to the frame of the diagram: Ser-
vice Ports PSJ2 and PSJ1 and Flow Port GasIn.

Each of the parts of the PowerSubsystem, defined in Figure B-18, with the exception of the generator which is purposely
elided to save space, is shown in this diagram along with the interconnections (eg. CANBus) between parts.

Figure B-22. Block Diagram: Internal structure of the Power Subsystem

Internal Block Diagram: SUV Power Subsystem

«part»
bp1 : BatteryPack

«part»
i1 : Inverter «part»

em1 : ElectricalMotor

IJ2:fsIAC EMJ3:fsIAC

IJ1:fsiDC

EMJ2
EMJ1:fsTorque

BPJ1:fsIDC

«part»
leftfw: FrontWheel

«part»
ecu1: EngineControlUnit

«part»
ft1: FuelTank

«part»
t1: Transmission

«part»
ice1 : InternalCombustionEngine

«part»
fwa : FrontWheelAxel

«part»
rightfw: FrontWheel

DS:fsTorque

S3:fsTorque

S2:fsTorque

DS:fsTorque

S1:fsTorque

ICES2:fsTorque

TS1:fsTorque

TS3:fsTorque

TS2:fsTorque

TJ1

ICEJ1

ICEH1:fsFuel

FTJ2

FTH2:fsFuel

FTH1:fsFuel

PSJ1 ECUJ5

ECUJ3 ECUJ1

ECUJ4

ECUJ2
ECUJ6

PSJ2

wb1

wb4

GasIn:fsFuel

wb2

shaft4

shaft5

shaft3

shaft2

CANBus3

CANBus1

iICEData

CANBus2

fuelLine

shaft1

S4

TJ2 CANBus4

ICEJ4
FTJ1

CANBus5
SysML Specification v. 1.0 alpha 173

B.3.12 Interfaces

Figure B-23 shows the interface definitions for the command and telemetry interfaces of the power subsystem.

If the name, or composition (i.e. the signals specified in each interface) of one of these interfaces is changed all usages of
the interface and signals on all other diagrams will be updated as they represent different usages of the same model element.
This greatly simplifies interface control by ensuring consistency for all usages of the interface across the model.

Figure B-24 shows the Flow Specifications defining the interfaces for physical (matter, data, energy) flows. This Figure
also shows the definitions of the blocks and value types which type the Flow Properties (which are the attributes of the Flow
Specifications, for example t:Torque). Torque, ACCurrent and DCCurrent are user defined value types which are type com-
patible with the pre-defined data type Real.

Note that the signals defined in the Flow Specifications, and shown on the sequence diagram of Figure B-13, are only
required if model execution based upon discrete event simulation is desired. Discrete event simulation is supported by several
UML 2.0 tools today. These signals are included in this example as a useful design pattern in such cases. Operation calls (for
example get/set operations) could have been used in lieu of signals to implement the communications.

Figure B-23. External Block Diagram: Command and Telemetry Interface Definitions

Block Definition Diagram: Command and Telemetry Interface Definitions

signal FuelData (fuelLevel : Real)

«interface»
iFuelTank

signal IgnitionOn()
signal SelectGear (direction : Direction)
signal ApplyAccelerator (angle : Read)

«interface»
iDriver

signal ECUCmd_regenBrake()

«interface»
iECUCmds

signal EMCmd_RPM (Desiredrpm : Real, CurrentRPM: Real)

«interface»
iEMCmds

signal ICECmd_Start()
signal ICECmd_RPM (Desiredrpm : Real, CurrentRPM: Real)

«interface»
iICECmds

signal TransCmd_regenBrake ()
signal TransCmd_Dir (direction : Direction)
signal TransCmd_getSoeed ()

«interface»
iTransCmds

signal TransData (speed : Real)

«interface»
iTransData

signal ICEData (rpm : Real, torque : Real, temperature : Real)

«interface»
iICEData

signal EMData (rpm : Real, torque : Real, current:Real, temperature : Real)

«interface»
iEMData

signal combine()
signal split()

«interface»
iAxelCmds
174 SysML Specification v. 1.0 alpha

The same comment regarding model concordance and interface control as above applies to Flow Specifications (which
are a kind of Interface).

B.3.13 State Machine Diagram for the Transmission “Shift” behavior

Figure B-25 shows the state machine diagram for the Transmission. This diagram describes the dynamic behavior of the
Transmission for the Activity “Shift”. This version of the state machine diagram uses the notation commonly refered to as
“state centric”. In this notation the nodes represent the states and the trigger, guard, action associated with transitions are spec-
ified using text associated with the transition.

The inverted fork notation in the lower left hand corner of the Reverse and Forward states indicates that these states have
sub-states defined.

Figure B-24. External Block Diagram: Flow Specification Definitions

Block Definition Diagram: Flow Specification Definitions

signal Torque(t:Torque)
signal revTorque(t:Torque)

t:Torque

«flowSpecification»
fsTorque

signal Fuel(fuel:Fuel)

fuel:Fuel

«flowSpecification»
fsFuel

signal Iac(iac:ACCurrent)
signal revIac(iac:ACCurrent)

Iac:ACCurrent

«flowSpecification»
fsIAC

signal Idc(idc:DCCurrent)
signal revIdc(idc:DCCurrent)

Idc:DCCurrent

«flowSpecification»
fsIDC

flowrate:Real
amount:Real

«block»
Fuel

«valueType»
quantity=”Current”
unit=”A”
dimension=”Q/T"

«valueType»
DCCurrent

«valueType»
quantity=”Current”
unit=”A”
dimension=”Q/T"

«valueType»
ACCurrent

«valueType»
quantity=”Torque”
unit=”N*m”
dimension=”ML^2/T^2"

«valueType»
Torque
SysML Specification v. 1.0 alpha 175

Figure B-26 shows the same statemachine diagram drawn using the “transition centric” notation. Using this notation,
triggers, actions and guards are shown as nodes on the diagram. Both diagrams are semantically equivalent. The choice of
state centric or transition centric statemachine notation is a matter of personal taste.

Figure B-25. State-Centric State Machine Diagram: Transmission “Switch Gear” Behavior

State Machine Diagram: Transmission Shift behavior

dir

TransCmd_getSpeed()/^TransData(speed);

[neutral]/speed=0;emTorque=0;iceTorque=0;

TransCmd_Dir(dir)

TransCms_getSpeed()/TransData(speed);

[park]/speed=0;emTorque=0;iceTorque=0;

[rev]/speed=0;emTorque=0;iceTorque=0;

TransCmd_Dir(dir)

TransCmd_getSpeed()/^TransData(speed);

TransCmd_Dir(dir)

[forward]/speed=0;emTorque=0;iceTorque=0;

TransCmd_Dir(dir)

Reverse

Park

ForwardNeutral
176 SysML Specification v. 1.0 alpha

B.3.14 Parametric Block Diagram

Figure B-27 shows another application of parametric blocks in addition to the trade study application discussed in Section
B.3.2, namely roll-up of technical performance measures. The first parametric constraint usage, TotalMass, rolls-up the mass
of the level one parts in the equipment brakedown structure (the Braking Subsystem, Power Subsystem and Chassis
Subsystem). This pattern could be used recursively to roll up the total mass of each subsystem.

The second parametric constraint usage places a constraint that the total mass be less than 1500 kg.

The definitions of these parametric constraints would be done on an Internal Block diagram as was done in Figure B-5 and
is omitted in the interest of space.

Figure B-26. Transition-Centric State Machine Diagram: Transmission “Switch Gear” Behavior

State Machine Diagram: Transmission Shift Behavior

Park

TransCmd_Dir(dir)

dir

speed=0;
emTorque=0;
iceTorque=0;

[forward]

speed=0;
emTorque=0;
iceTorque=0;

[neutral]

speed=0;
emTorque=0;
iceTorque=0;

[park]

speed=0;
emTorque=0;
iceTorque=0;

Forward Reverse

TransCmd_Dir(dir) TransCmd_getSpeed() TransCmd_Dir(dir) TransCmd_getSpeed()

Neutral

TransCmd_Dir(dir) TransCmd_Dir(dir)

Park

TransData(speed) TransData(speed)

[reverse]
SysML Specification v. 1.0 alpha 177

B.3.15 Requirements Satisfaction

Figure B-28 shows an example of requirements satisfaction relationship between various model elements and the requirements
they satisfy.

Figure B-27. Mass Constraints

Parametric Diagram: Mass Constraints

{totalMass = c_ss+p_ss+b_ss}

::SUV::Blocks::HybridSUV.mass

::SUV::Blocks::PowerSubsystem.mass

::SUV::Blocks::BrakingSubsystem.mass

::SUV::Blocks::ChassisSubsystem.mass

totalMass

«binding»

p_ss

«binding»

b_ss

«binding»
c_ss

«binding»

mass

«binding»

{mass < 1500 kg}

«parametric»
totalMass:TotalMass

«parametric»
maxmass:MaxMass
178 SysML Specification v. 1.0 alpha

B.3.16 Complete Traceability

Figure B-29 shows complete traceability from the user requirement, through derived system requirements to detailed behavior
specifications for each subsystem/unit. Having established the traceability as we were working through the analysis and
design, the production of this Requirement diagram should be a trivial exercise. Compare this with traditional analysis and
design, where in many cases establishing traceability is a separate activity done after the fact.

Figure B-28. Requirement Diagram: Requirement Satisfaction

Requirement Diagram: System Requirement PowerSourceSelection Satisfaction

«requirement»
PowerSourceSelection

«usecase»
::SUV::UseCases::Accelerate

«block»
::SUV::Blocks::EngineControlUnit«satisfy»

«satisfy»
SysML Specification v. 1.0 alpha 179

Only a portion of the traceability is shown on Figure B-29. Tools that support SysML should be able to generate complete
or custom traceability tables via queries on the model. Figure B-30 shows and example of such a table.

Figure B-29. Requirement Diagram: Requirement Traceability

Requirements Diagram: Requirement Derivations

«requirement»
::HybridSUV::Performance ::FuelEconomy

«requirement»
PowerSourceSelection

«requirement»
::HybridSUV::Eco-Friedliness::Emissions

«derive» «derive»

«block»
::SUV::Blocks::EngineControlUnit

«usecase»
::SUV::UseCases::Accelerate

«activity»
::SUV::Activities::ControlPower::Calc_Desired_Velocity

«activity»
::SUV::Activities::ControlPower::Calc_Req_RPM

«satisfy» «satisfy»

«allocate» «allocate»

«interaction, testcase»
::SUV::Tests::PowerSourceSelection

«verify»

«block»
::SUV::Blocks::PowerSubSystem

ecu1
180 SysML Specification v. 1.0 alpha

Figure B-30. Sample Traceability Table

Dependency TraceKind SourceName SourceKind TargetName TargetKind

of ::SUV::Blocks::EngineControlUnit allocate InitializeICE Activity EngineControlUnit Block

of ::SUV::Blocks::InternalCombustionEngine allocate StartICE Activity InternalCombustionEngine Block

of ::SUV::Blocks::EngineControlUnit allocate SwitchGear Activity EngineControlUnit Block

of ::SUV::Blocks::Transmission allocate Shift Activity Transmission Block

of ::SUV::Blocks::EngineControlUnit allocate Calc_Desire_vel Activity EngineControlUnit Block

of ::SUV::Blocks::Transmission allocate Meas_Current_vel Activity Transmission Block

of ::SUV::Blocks::EngineControlUnit allocate Calc_Req_RPM Activity EngineControlUnit Block

of ::SUV::Blocks::Transmission allocate Amplify_Torque Activity Transmission Block

of ::SUV::Blocks::FrontWheelAxel allocate Split_Torque Activity FrontWheelAxel Block

of ::SUV::Blocks::FrontWheel allocate Provide_Traction Activity FrontWheel Block

of ::SUV::Blocks::InternalCombustionEngine allocate Prod_Torque Activity InternalCombustionEngine Block

of ::SUV::Blocks::ElectricalMotor allocate Prod_Torque Activity ElectricalMotor Block

of ::SUV::Blocks::BrakingSubsystem allocate Brake Activity BrakingSubsystem Block

of ::SUV::Blocks::EngineControlUnit allocate SetRegenBrake Activity EngineControlUnit Block

of ::SUV::Blocks::Transmission allocate ConfigRegen Activity Transmission Block

of ::SUV::Blocks::Transmission allocate Combine_Torque Activity Transmission Block

of ::SUV::Blocks::FrontWheelAxel allocate Combine_Torque Activity FrontWheelAxel Block

of ::SUV::Blocks::ElectricalMotor allocate GenerateAC Activity ElectricalMotor Block

of ::SUV::Blocks::Inverter allocate RectifyCurrent Activity Inverter Block

of Blocks::BatteryPack allocate StoreElectricalEnergy Activity BatteryPack Block

of ::SUV::Blocks::Inverter allocate ConvertDCtoAC Activity Inverter Block

of ::SUV::Requirements::HybridSUV::Performance::Range derive Regenerative Braking Requirement Range Requirement

of FuelEconomy derive Regenerative Braking Requirement FuelEconomy Requirement

of Braking derive Regenerative Braking Requirement Braking Requirement

of ::SUV::Requirements::HybridSUV::Performance::FuelEconomy derive PowerSourceSelection Requirement FuelEconomy Requirement

of HybridSUV::'Eco-Friendliness'::Emissions derive PowerSourceSelection Requirement Emissions Requirement

of ::SUV::Requirements::HybridSUV::Performance::Acceleration derive PowerSourceSelection Requirement Acceleration Requirement

of ::SUV::Requirements::HybridSUV::Performance::Range derive PowerSourceSelection Requirement Range Requirement

of Braking satisfy BrakingSubsystem Block Braking Requirement

of Braking satisfy Drive Operation Braking Requirement

of ::SUV::Tests::PowerSourceSelection verify PowerSourceSelection Interaction PowerSourceSelection Requirement

of Regenerative Braking verify EnergyConversion Statemachine Regenerative Braking Requirement

of Regenerative Braking verify ConvertKineticToEnergy Interaction Regenerative Braking Requirement

SysML Specification v. 1.0 alpha 181

182 SysML Specification v. 1.0 alpha

Appendix C. Non-Normative Extensions
This appendix describes extensions to SysML that are being considered for standardization, but at this time are non-normative
(i.e, they are not part of the official SysML standard). Users and tool vendors are encouraged to experiment with these exten-
sions as they set fit, and provide feedback to the SysML specification team (mailto:feedback@SysML.org) regarding the use-
fulness of these extensions.

Non-normative extensions consist of stereotypes and diagram extensions and are organized by language unit, consistent
with how the main body of this specification is organized.

C.1 Activities

C.1.1 Overview

Two nonnormative extensions to activities are described for:

• Enhanced Functional Flow Block Diagrams.

• Streaming activities that accept inputs and/or provide outputs while they are active.

More information on these extensions and the standard SysML extensions is available at [Bock. C., “SysML and UML 2 Sup-
port for Activity Modeling,” to appear in the Journal of the International Council of Systems Engineering].

C.1.2 Diagram Elements

Table 1 describes the concrete syntax for the non-normative extensions defined in this section.

Table 1. Graphical nodes for non-normative extensions to Activities

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Activity SysML::Activities::«EFFBD» Non-norma-
tive

SysML::Activities::«Stream-
ing»

Non-norma-
tive

«effbd»
ActivityName

«streaming»
ActivityName
SysML Specification v. 1.0 alpha 183

C.1.3 Package Structure

Figure C-1. Package Structure for SysML Activities

C.1.4 UML Extensions

Abstract Syntax

Package Activities

SysML::Activities::«Non-
Streaming»

Non-norma-
tive

Table 1. Graphical nodes for non-normative extensions to Activities

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

«nonStreaming»
ActivityName

SysML::Activities

SysML::
Non-NormativeExtensions::

EFFBD

<<import>>
184 SysML Specification v. 1.0 alpha

Figure C-2. Abstract Syntax for Activity Non-Normative extensions.

C.1.4.1 Stereotypes

EFFBD

Description

Enhanced Functional Flow Block Diagrams (EFFBD) are a widely-used systems engineering diagram, also called a behavior
diagram. Most of its functionality is a constrained use of UML activities, as described below. This extension does not address
replication, resources, or kill branches. Kill branches can be translated to actvities using interruptible regions and join specifi-
cations.

When this stereotype is applied to an activity it specifies that the activity conforms to the constraints necessary for EFFBD
defined below.

Constraints

When the «EFFBD» stereotype is applied to an activity, its contents must conform to the following contraints:

[1] (On Activity) Activities do not have partitions.

[2] (On Activity) All decisions, merges, joins and forks are well-nested. In particular, each decision and merge are matched
one-to-one, as are forks and joins, accounting for the output parameter sets acting as decisions, and input parameters and
control acting as a join.

[3] (On Action) All actions require exactly one control edge coming into them, and exactly one control edge coming out,
except when using parameter sets.

[4] (On ControlFlow) All control flows into an action target a pin on the action that has isControl = true.

«metaclass»
UML::Activities::

CompleteActivities::Activity

«stereotype»
EFFBD

«stereotype»
Streaming

«stereotype»
NonStreaming
SysML Specification v. 1.0 alpha 185

[5] (On ObjectNode) Ordering is first-in first out, ordering = FIFO.

[6] (On ObjectNode) Object flow is never used for control, isControlType = false, except for pins of parameters in parameter
sets.

[7] (On Parameter) Parameters take and produce no more than one item, multiplicity.upper =1.

[8] (On Parameter) Output parameters produce exactly one value, multiplicity.lower = 1. The «optional» stereotrype cannot
be applied to parameters.

[9] (On Parameter) Parameters cannot be streaming or exception.

[10] (On ParameterSet) Parameter sets only apply to output parameters.

[11] (On ParameterSet) Parameter sets only apply to control. Parameters in parameter sets must have pins with isControlType
= true.

[12] (On ParameterSet) Parameter sets have exactly one parameter, and it must not be shared with other parameter sets.

[13] (On ParameterSet) If one output parameter is in a parameter set, then all output parameters of the behavior or operation
must be in parameter sets.

[14] (On ActivityEdge) Edges cannot have time constraints.

[15] The following SysML stereotypes cannot be applied: «rate», «controlOperator», «noBuffer», «overwrite».

Streaming

Description

When the «Streaming» stereotype is applied to an activity it specifies that the activity can accept inputs or provide outputs
after they start and before they finish, respectively.

Constraints

[1] The activity has at least one streaming parameter.

NonStreaming

Description

When the «NonStreaming» stereotype is applied to an activity it specifies that the activity can accept inputs only when it starts,
and provide outputs only when it finishes.

Constraints

[1] The activity has no streaming parameters

C.1.4.2 Diagram Extensions

N/A
186 SysML Specification v. 1.0 alpha

C.1.5 Usage Examples

Figure C-3 shows an example activity diagram with the «EFFBD» stereotype applied, translated from [Long. J., “Relation-
ships between common graphical representations in system engineering,” 2002]. The stereotype applies the constraints speci-
fied in above, for example, that the data outputs on all functions are required and that queuing is FIFO.

Figure C-4 shows an example activity diagram with the «Streaming» and «NonStreaming» stereotypes applied, adapted from
[MathWorks, “Using Simulink,” 2004]. It is a numerical solution for the differential equation x'(t) = -2x(t) + u(t). Item types
are omitted brevity. The «streaming» and «nonStreaming» stereotypes indicate which subactivities take inputs and produce
outputs while they are executing. They are simpler to use than the {stream} notation on streaming inputs and outputs.

Figure C-3. Example activity with «EFFBD» stereotype applied

Figure C-4. Example activity with «streaming» and «nonStreaming» stereotypes applied to subactivities.

External
Input

External
Output

2.1 Serial
Function

2.2 Multi-exit
Function

2.3 Function in
Concurrency

Item 1

2.4 Function in
Multi-exit
Construct

2.5 Function in
an Iterate

[before third time]

Item 2

«optional» [after
third
time]

2.6 Output
Function

«optional»

Item 3

Item 4

«optional»

«optional»

«effbd»

{cc#1}

{cc#2}

Generate
u(t)

Add

-2

Display
«streaming»

Integrate
Over Timeu

x’ x

Multiply
-2x

«nonStreaming» «streaming» «streaming»

«nonStreaming»
SysML Specification v. 1.0 alpha 187

C.2 Requirements

C.2.1 Overview

This section describes a non-normative extension to support trade studies, which are an essential aspect of any systems engi-
neering effort. In particular, a trade study is used to evaluate a set of alternatives based on a defined set of criteria. Each crite-
ria may have a weighting to reflect its relative importance and a score based on the alternative under investigation. These
criteria are known as Measures of Effectivenss.

A Measure of Effectiveness (MoE) states an optimization condition that a system must satisfy. Whereas the requirements
for a system define the domain of the solution, the solution space, the Measures of Effectiveness drive the solution to a partic-
ular region in that space.

The measures of effectiveness are tightly related to stakeholder needs. For example: the requirements differences
between a PC and a laptop are largely in the laptop optimization conditions for minimum weight, minimum thickness, and
maximum battery life. These critiera are some of those that customers (one of the kinds of stakeholder) consider in deciding
what to purchase.

A MoE is a stereotype of UML::Classes::Kernel::Class. Composite MoEs can be created by using the composition asso-
ciation. The interpretation of a composite MoE is that its score will be determined based on the aggregate of the product of
the score and weight of its component MoEs. This rule is applied recursively at each level of decomposition to arrive at an
overall value for the alternative being investigated.

Scores are only entered (vs computed according to the above rule) for the leaves, or tips of the MoE hierarchy, based on
assessment of the associated critical performance parameter for the alternative under investigation. Parametric constraints are
used to related the critical performance parameters to the MoEs. These scores are normlized using a value function, also
called a utility curve, that maps a raw score, for example battery life in hours, to a value betwee 0 and 100 so that the aggrega-
tion can be performed. (It wouldn’t make sense to add battery life in hours to laptop weight in kilograms, for example). Again,
parametric constraints may be used to specify the utility curve used for normalization.

See Appendix B for a detailed example of performing trade studies using MoEs and parametric constraints.

There are also a number of predefined enumeration types in the model library SysML Types associated with Require-
ments. These are used to classify requirements, capture the risk associated with a requirement, and specify the verification
method associated with the requirement. See Section C.4.7 for a description of the predefined enumerations that support
Requirements.
188 SysML Specification v. 1.0 alpha

C.2.2 Diagram elements

C.2.3 Package Structure

Figure C-5. Package Structure for SysML Requirements

Table 2. Graphical nodes included in effectiveness element

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Measure of
Effectiveness

SysML::«effectiveness» Non-norma-
tive

Table 3. Graphical paths for effectiveness.

PATH TYPE CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Derive SysML::Requirements Basic

score : R eal
w eight : R eal = 100

«effectiveness»
M O EN am e

«effectiveness»
id = “M yM O EIdentifier”
text = “M O E descrip tion”
optim izationD irection = m axim ize

«derive»

SysML::Requirements

SysML::
Non-NormativeExtensions::

MOE

<<import>>
SysML Specification v. 1.0 alpha 189

C.2.4 UML Extensions

Abstract Syntax

Package Requirements

Figure C-6. Abstract Syntax for Effectiveness Metamodel.

C.2.4.1 Stereotypes

Derive

No change except for constraint 1 for requirement is relaxed to read:

[1] The source element must be an element stereotyped by «requirement» or «effectiveness».

Measure of Effectiveness

Description

«metaclass>>
UML::Classes::
Kernal::Class

maximize
minimize

«enumeration»
optimizationDirectionKind

score : Real
weight : Real

«stereotype»
Effectiveness

id : String
text : String
optimizationDirection : OptimizationDirectionKind

«stereotype»
UML::StandardProfileL1::

Trace

«stereotype»
Derive
190 SysML Specification v. 1.0 alpha

A Measure of Effectiveness (MoE) states an optimization condition that a system must satisfy. Whereas the requirements for
a system define the domain of the solution, the solution space, the Measures of Effectiveness drive the solution to a particular
region in that space. Each MoE has a weight attribute to reflect its relative importance and a score attribute to capture its value
based on the alternative under investigation.

A MoE is a stereotype of UML::Classes::Kernel::Class. Composite MoEs can be created by using the composition asso-
ciation. The interpretation of a composite MoE is that its score will be determined based on the aggregate of the product of
the score and weight of its component MoEs. This rule is applied recursively at each level of decomposition to arrive at an
overall value for the alternative being investigated.

Attributes

id : String The identifier of the effectiveness.

text : String The textual description or a reference to the textual description
of the measure of effectiveness (MoE).

optimizatonDirection : OptimizationDirectionKind The indicator as to the direction of the optimization.

Instance Attributes

score : Real The normalized score for the design alternative being investigated. The normalization of the raw
scores for a given design alternative is done using utility curves (sometimes called value functions,
since they yield a resulting value for a given raw input).

weight : Real The relative importance of the MoE. The sum of the weights of all MoEs at any given level in the
hierarchy must sum to 100.

Constraints

[1] The property isAbstract must be set to false.

[2] The property ownedOperation must be empty.

[3] Classes stereotyped by «effectiveness» may not participate in associations except for composite associations with other
classes stereotyped by «effectiveness»

[4] A component (part) of a class stereotyped by «effectiveness» must also be a Measue of Effectiveness (MoE).

[5] The subtypes of a class stereotyped by «effectiveness» must also be stereotyped by «effectiveness».

[6] A class stereotyped by «effectiveness» can participate in a «trace» dependency only if the other end of the dependency is
not stereotyped by «effectiveness».

[7] The sum of the values of the weight attribute for all component (parts) of a composite class stereotyped by «effectiness»
must be 100.

[8] The value of the score attribute of a class stereotyped by «effectiness» must be in the range [0..100]

OptimizationDirectionKind (pre-defined enumeration)

Description

This pre-defined enumeration specifies whether the Measure of Effectiveness should be maximized or minimized.

Enumration Literals

maximize maximize indicates that the objective is to maximize the MoE.

minimize minimize indicates that the objective is to minimize the MoE.
SysML Specification v. 1.0 alpha 191

C.2.4.2 Diagram Extensions

None

C.2.5 Compliance Level

Non-normative

C.2.6 Usage Example

Figure C-7 shows a hierarchy of measures of effectiveness defined to support a trade study for the Hybrid SUV. The
Overall «effectiveness» is the aggregates the overall score for the alternative being investigated. The Acceleration, FuelE-
cononmy, Emissions and Range «effectiveness» are derived from the critical top level User Requirements of the same name.

Figure C-7. Measures of Effectiveness.

Requirement Diagram: Measures of Effectiveness

«effectiveness»
id =”MoE1"
text = “Aggregate measure of effectiveness”
optimizationDirection = maximize

score:Real
Weight:Real = 100

«effectiveness»
Overall

«effectiveness»
id =”MoE1.1"
text = “Acceleration aggregate”
optimizationDirection = maximize

score : Real
weight : Real = 40

«effectiveness»
Acceleration

«effectiveness»
id =”MoE1.2"
text = “Fuel Economy”
optimizationDirection = maximize

score : Real
weight :Real = 30

«effectiveness»
FuelEconomy

«effectiveness»
id =”MoE1.3"
text = “Emissions”
optimizationDirection = minimize

score : Real
weight : Real = 10

«effectiveness»
Emissions

«effectiveness»
id =”MoE1.4"
text = “Range”
optimizationDirection = maximize

score : Real
weight : Real = 20

«effectiveness»
Range

«effectiveness»
id =”MoE1.1.1"
text = “time to 60 mph”
optimizationDirection = maximize

score : Real
weight : Real = 60

«effectiveness»
time0to60

«effectiveness»
id =”MoE1.1.2"
text = “measures passing ability”
optimizationDirection = maximize

score : Real
weight : Real = 40

«effectiveness»
time60to100

MoE1.1 MoE1.2 MoE1.3 MoE1.4

MoE1.1.1 MoE1.1.2
192 SysML Specification v. 1.0 alpha

Appendix D. Non-Normative Model Library
This appendix describes a non-normative model library for SysML that are being considered for standardization, but at this
time are non-normative (i.e, they are not part of the official SysML standard). Users and tool vendors are encouraged to exper-
iment with this model library as they set fit, and provide feedback to the SysML specification team (mailto:feedback@SysM-
Lorg) regarding its usefulness.

These pre-defined ValueTypes and Default Enumerations are used in the Sample Problem thourghout the specification as
well as in Appendix B.

D.1 Pre-defined ValueTypes
This package of the model library provides a number of predefined ValueTypes for use in modeling systems. All pre-

defined ValueTypes are Real numbers (i.e. they specialize the SysML pre-defined primitive Real). Real is itself defined in in
SysML (see Chapter XXX Types). A ValueType is an extension of UML::Classes::Kernel::PrimitiveType and had stereotype
properties that specify the physical quantity represented, the unit of measure and the dimension. See the Auxiliary Constructs
chapter for the definition of the ValueType extension.

Table 1 lists the predefined ValueTypes.

Table 1 Predefined ValueTypes

Name of ValueType
Quantity
Represented Unit Dimension

MeterPerSec2 Acceleration m/s^2 L/T^2

FeetPerSec2 Acceleration ft/s^2 L/T^2

Radians Angle radian NA

Degrees Angle degrees NA

RadPerSec2 Angular Acceleration radian/s^2 1/T^2

RadPerSec Angular Frequency radian/s 1/T

SquareMeters Area m^2 L^2

SquareFeet Area ft^2 L^2

Farads Capacitance F Q^2T^2/ML^2

Coulombs Charge C Q

Amperes Current A Q/T

KgPerMeter3 Density kg/m^3 M/L^3

Meters Length m L

Feet Length ft L

Joules Energy, Work, Heat J ML^2/T^2

Calories Energy, Work, Heat cal ML^2/T^2

BTU Energy, Work, Heat btu ML^2/T^2

ElectronVolts Energy, Work, Heat eV ML^2/T^2

Newtons Force N ML/T^2

Pounds Force lb ML/T^2

Hertz Frequency Hz 1/T

Henrys Inductance H ML^2/Q^2
SysML Specification v. 1.0 alpha (Draft) - DO NOT DISTRIBUTE 193

D.2 Pre-defined Enumeration Literals
This package of the model library specializes the enumerations defined in the package SysML::Types to provide a set of
default enumerations literals. The base enumerations defined in the package SysML::Types and are used by SysML for classi-
fying risk, requirement types, verification method, verification verdict and controlvalue. The definition of the base enumera-
tions do not have any enumeration literals defined.

This approach of defining base enumerations and specializing them in this non-normative library is done so that users can
add their own literals and thus customize SyML to meet their needs. See the Types chapter for the definition of the associated
Enuneration Types (which are normative).

Table 2 lists the subtypes of the normative Enumeration literals for each of the enumerations defined in SysML::Types and the
associated default literals.

Table 2 Pre-defined Enumeration Literals

Kilograms Mass kg M

Slug Mass slug M

Watts Power watt ML^2/T^3

HP Power hp ML^2/T^3

Bars Pressure bar M/LT^2

Atmospheres Pressure atm M/LT^2

Ohms Resistance ohm ML^2/Q^2T

Kelvin Temperature K K

DegC Temperature degC K

DegF Temperature degF K

Seconds Time, Period s T

NewtonMeters Torque N*m ML^2/T^2

FootPounds Torque ft*lb ML^2/T^2

KPH Speed km/h L/T

MPH Speed mi/h L/T

CubicMeters Volume m^3 L^3

CubicFeet Volume ft^3 L^3

Base Enumeration
in SysML::Types Specilized Enumeration

Default
Enumeration
Literal Example Description

ControlValue DefaultControlValue Enable The Enable literal means to start a new execution
of a behavior

Disable The Disable literal means a termination of an exe-
cuting behavior that can only be started again from
the beginning

Name of ValueType
Quantity
Represented Unit Dimension
194 SysML Specification v. 1.0 alpha (Draft) - DO NOT DISTRIBUTE

RequirementKind DefaultRequirementKind Functional A Functional requirement specifies what the item
must do

Performance For a given function, a Performance requirement
states how well that function is to be performed
based on a specific metric of measure (including
units), which can considered a Key Performance
Paramter.

Interface An Interface requirement specifies that the
required characteristics at a point or region of con-
nection of the item to the outside world (i.e., loca-
tion, geometry, inputs and outputs by name and
specification, allocation of signals to pins, etc).

RiskKind DefaultRiskKind High High indicates an unacceptable level of risk
Medium Medium indicates an acceptable level of risk
Low Low indicates a minimal level of risk or no risk

Verdict DefaultVerdict Pass Pass indicates that the test behavior gives evidence
for correctness of the SUT for that specific test
case.

Fail Fail indicates that the purpose of the test case has
been violated.

Inconclusive Inconclusive is used for cases where neither a Pass
nor a Fail can be given.

Error Error indicates errors (exceptions) within the test
system itself.

VerificationMethodKind DefaultVerification-
MethodKind

Analysis Analysis indicates that verification will be per-
formed by technical evaluation using mathematical
representations, charts, graphs, circuit diagrams,
data reduction, or representative data. Analysis
also includes the verification of requirements
under conditions, which are simulated or modeled;
where the results are derived from the analysis of
the results produced by the model.

Demonstration Demonstration indicates that verification will be
performed by operation, movement or adjustment
of the item under specific conditions to perform the
design functions without recording of quantitative
data. Demonstration is typically considered the
least restrictive of the verification types.

Base Enumeration
in SysML::Types Specilized Enumeration

Default
Enumeration
Literal Example Description
SysML Specification v. 1.0 alpha (Draft) - DO NOT DISTRIBUTE 195

Inspection Inspection indicates that verification will be per-
formed by examination of the item, reviewing
descriptive documentation, and comparing the
appropriate characteristics with a predetermined
standard to determine conformance to require-
ments without the use of special laboratory equip-
ment or procedures.

Test Test indicates that verification will be performed
through systematic exercising of the applicable
item under appropriate conditions with instrumen-
tation to measure required parameters and the col-
lection, analysis, and evaluation of quantitative
data to show that measured parameters equal or
exceed specified requirements.

Base Enumeration
in SysML::Types Specilized Enumeration

Default
Enumeration
Literal Example Description
196 SysML Specification v. 1.0 alpha (Draft) - DO NOT DISTRIBUTE

Appendix E. OMG XMI Model Interchange

E.1 Overview
The XML Metadata Interchange (XMI) file for the SysML v. 1.0a Profile model, which is based on the UML v. 2.0 meta-
model, is currently only available in XMI v. 1.1 format. Both the SysML v. 1.0a Profile model, and its accompanying XMI file
are support documents for this specification. See Section 5.1, “Support Documents,” on page 8 for support document avail-
ability.

We plan to provide an XMI file in XMI v. 2.1 format, which is based on the MOF 2.0 meta-metamodel and supports UML
2.0 model interchange, in a support document that will accompany a future revision of this specification.
SysML Specification v. 1.0 alpha 197

198 SysML Specification v. 1.0 alpha

Appendix F. ISO AP233 Model Interchange

F.1 Overview
Work is currently underway to provide ISO AP233 model interchange support for the SysML specification. We anticipate that
the Abstract Syntax for SysML v. 1.0a model and XMI file, which are support documents for this specification, will assist the
development of ISO AP233 model interchange support for SysML. See Section 5.1, “Support Documents,” on page 8 for sup-
port document availability.

The following sections describe the technical approach for interchanging SysML models using the ISO AP233 data
exchange protocol.

F.2 Background
AP233 is a data exchange protocol for systems engineering based on STEP (ISO 10303) Product Data Representation and
Exchange standardization initiative. STEP is designed to provide a data interchange schema based on a tool-independent meta-
model.1 AP233 is intended to support the whole system development life cycle, ranging from requirements definition to sys-
tem verification and validation.

Within projects the system engineering activities tie together the different domain engineering disciplines with one consis-
tent system view. The same applies to the systems engineering data that forms the core of a systems description and has to be
linked to the remaining domain engineering data. Figure F-1 is a UML diagram that shows how AP233 is related to other pro-
tocols. AP233 makes re-use of the STEP-PDM definitions, indicated by the «use» dependency to STEP-PDM. The remaining
packages represent other STEP application protocols. The dependencies can be read as “AP233 depends on the definition of
…”, which means if a protocol will be changed, then this means that AP233 may also be affected.

The following areas are covered in the AP233 data model:

• Requirements

• Functional architecture

• Physical architecture

• Verification/Validation

• Management

• Supporting Modules as work, person, properties

1. For more information about STEP see http://www.tc184-sc4.org/SC4_Open/SC4_Work_Products_Documents/
STEP_(10303).
SysML Specification v. 1.0 alpha 199

Figure F-1. AP233 and related protocols

Figure F-2 shows that the basic item in AP233 is a product. Each package makes re-use of the definition of a product (in the
PDM sense). A requirement in the requirement package is derived from Product (in the package Product) and inherits the
properties of Product.

STEP-PDM

AP224

Mechanical

AP209

AP239

AP212AP210

AP214

AP203

AP213

AP233

UML

STEP-TRP

STEP-TAS

Electric Machining

«uses»

AP232

AP221
200 SysML Specification v. 1.0 alpha

Figure F-2. AP233 Toplevel Architecture

AP233 is a follow-on activity of the European SEDRES (System Engineering and Exchange Standardisation) project which
developed systems engineering data model based on the STEP technology. AP233 was launched based on the SEDRES results
and started with a modularization of the data model to ease re-use of parts of other protocols.

The current status of AP233 is the following:

• Requirements module implemented

• Text-based requirements

• Property-based requirements

• Basic structure module

• Tracing between structure and requirements

• AP233 Demonstrator Tool: In order to facilitate understanding, demonstration and utilization of AP233 a demonstrator
tool is being developed. It implements basic features for the definition of requirements (in different appearances like
text, property and spread-sheet), a system break-down and traceability between requirements and systems. In addition,
it has multiple interfaces to read and write the data, not only in STEP and XML but also interfaces to the Office world
such as Work and Visio.

• Next Steps:

• Structural Module

• Behavioral Module

• Risk Module

System Requirements Documents

Product

Risk Analysis Cost ModelsVerification Validation

Properties

Work

Person

ManagementRepresentation

AP233
SysML Specification v. 1.0 alpha 201

• Scheduling Module

• Rules Module

• Cost Module

The major stakeholder for the AP233 development is the Incose/MDSD (Model-Driven System Design).

F.3 Approach
From a systems engineering perspective, future SysML tools are just a subset of tools which are used throughout the life cycle
for system development and maintainance. The challenge for any tool integration activity is to provide a mapping between the
different meta models which are used to capture the tools data. As ISO10303 STEP and in particular AP233 (for systems engi-
neering) provide a neutral data repository for tool integration, the SysML meta model has to be mapped to AP233.

In order to decouple the different meta-models from AP233 and SysML it has been decided to define a mapping model.
This mapping model than is used to map the correspondent elements of AP233 and SysML to it. The mapping model is a high-
level (independent) representation of the systems engineering concepts implemented in SysML and AP233. The mapping
model is defined in UML.

The AP233 modeling is done using the STEP modeling language Express. Basically Express implements similar concepts
as UML: classes(entities), attributes, associations and inheritance. In addition to that Express has some data modeling related
modeling elemens currently not implemented in UML. But in order to have a common mapping platform it has been decided
to perform the mapping in UML. For this it is necessary to convert the AP233 model to UML. In order to achieve common
semantics for the AP233 model in UML a dedicated profile has been developed.

 shows the relationship between the different models. At the bottom the mapping model can be seen which is used to
bridge the AP233 and SysML meta models. On the right hand side the AP233 model in UML is an instance of a UML profile,
to capture and preserve Express semantics. The left hand side shows SysML as an extension of UML2. Although UML1.x is
sufficient to specify an Express profile, it will be eventually replaced with UML2.
202 SysML Specification v. 1.0 alpha

Figure F-3. Models in use for the SysML to AP233 alignment

F.3.1 Capturing Express models in UML

The development of the UML profile for Express is shown in Figure F-3 . In the diagram shows only the ‘core’ subset of the
modeling language Express. The basic element is an entity which can be compared to a class in UML. It may have attributes,
attributes and associations. The attribut definition is similar to UML. Attributes are described with a name, type and
multiplicity. Attributes may be optional. The ‘SubTypeOf’ class defines the inheritance relationship in Express.

Express has the concept of a type which can be either an enumeration, a basic data type (real, number, string,..), a select
statement or a container class type (set, list). The select statement can be seen as a ‘one of’ relationship (e.g. a person can drive
either a car or a bike at a given time).

Derived from this conceptual model is the UML profile. This is a manual step. The relationship between can be seen as the
problem-model, the UML profile is an implementation of this problem in a UML tool using the standardized UML
extensibility mechanisms. The UML profile for the Express modeling language looks as the following:

Appendix F-5shows the Express profile for UML manually derived from the Express meta model.

<<MetaModel>>
UML 2

<<MetaModel>>
SysML

<<MetaModel>>
MappingModel

<<Profile>>
Express

<<MetaModel>>
UML 1.*

<<MetaModel>>
AP233 (UML)

<<extends>>

<<extends>>

<<instantiates>>

<<mapping>>
<<mapping>>
SysML Specification v. 1.0 alpha 203

Figure F-4. Excerpt of the Express meta model

ListAssociation

SetAssociation

«abstract»
Element

«abstract»
Type

Entity

SubTypeOf

superType

subType

Enumeration

Number

String

Real

Set

List

Select

SelectAssociation

-name
-type
-optional
-multiplicity

Attribute

1 *

PropertyAssociation
204 SysML Specification v. 1.0 alpha

Figure F-5. UML Profile for Express

F.3.2 Converting Express models to UML

The AP233 UML model will be automatically derived from the AP233 Express model. The process is shown in Figure F-6.
Input for the conversion process is the AP233 express model. This will be parsed be a dedicated express parser which takes the
express model an produces an informal XML model capturing the express model. This can be used by a XSLT process which
takes the XML file and generates a XMI file based on the Express profile for UML.

<<metaclass>>
UmlClass

<<stereotype>>
list

<<stereotype>>
set

<<stereotype>>
select

<<stereotype>>
entity

<<metaclass>>
UmlAssociation

<<stereotype>>
SetAssociation

ZeroOrMany
One
OneOrMany

<<stereotype>>
Mulitiplicity

<<stereotype>>
SelectAssociation

<<stereotype>>
ListAssociation

True
false

<<stereotype>>
bool

<<metaclass>>
UmlAttribute

Mult : multiplicity=One
opt : bool = true

<<metaclass>>
ExpressAttribute
SysML Specification v. 1.0 alpha 205

Figure F-6. Activities to derive the AP233 UML model from the Express model

F.4 Model Alignment

F.4.1 SysML Requirements Model

In order to demonstrate the model alignment the following shows how a requirement module is described in the another
section of this specification. It shows the basic elements used to describe requirements and relate them to other modeling
elements such as functions, components or test caes. The fundamental element is a requirement with the according
parameters (Requirement) . A test case (testCase) is used to demonstrate the success of the implementation of a given
requirement. To check the completeness of the design the requirement is linked to a UML element which satisfies the
requirement (RequirementSatisfaction). As this model is to define the modeling language it makes reuse of the UML
provided modeling elements. For example, the RequirementVerification is a UML dependency link.

The main purpose to recall the requirements module of SysML here is to explain the differences of the different models
to justify the approach.

<<converter>>
EEP

<<converter>>
xml2XMI.xslt

<<UML Model>>
Express

Meta Model

<<manual>>
derive Profile

<<express>>
AP233.exp

<<XML>>
Model.xml

<<XML>>
AP233.xmi

<<Profile>>
UML Profile
 for Express
206 SysML Specification v. 1.0 alpha

Figure F-7. SysML requirements model

<<stereotype>>
RequirementSatisfaction

<<metaclass>>
UML::Dependency

<<metaclass>>
UML::NamedElement

<<metaclass>>
UML::PackageableElement

*

<<stereotype>>
testCase

<<stereotype>>
RequirementVerification

<<metaclass>>
UML::NamedElement

<<stereotype>>
SysML::ReferenceData

(from AuxiliaryConstructs)

<<stereotype>>
Rationale

<<stereotype>>
UML::Trace

+source
{redefines
supplier}

+target
{redefines
client}

<<metaclass>>
UML::Dependency

<<stereotype>>
Requirement

String text
String id
String criticality

+subRequirement
{redefines ownedElement}

*

0..1

+target
{redefines
client}

+source
{redefines
supplier}

+source
{redefines
supplier}

*

*

*

*

*

*

*

*

*

*

*

<<enumeration>>
Verdict

Verdict verdict

pass
fail
inconclusive
error
SysML Specification v. 1.0 alpha 207

F.4.2 AP233 Requirements Model

Figure F-8. Basic pattern for AP233

This chapter explains in brief the model of AP233 with a focus on the requirements module and the representation of
requirements. The main purpose is to explain the AP233 model and to point out the differences between SysML and AP233
models. Appendix F-8 shows an excerpt of AP233, the basic PDM (Product Data Management) pattern, consisting of
Product, Product_version and Product_view_definition. In AP233 the re-use has been done to enable the versioning of the
data captured in an AP233 file and to ease the interfacing of PDM systems. In the definition of PDM everything which has to
be produced is a product. Therfore, requirements, systems or documents are products.

In order to track the changes for each product along the life cycle configuration control has to be applied. The pattern Product,
Product_version and Product_view_definition defines the following:

-id
-name
-description

«entity»
Product

«entity»
System

«entity»
Requirement

-id
-description
-name

«entity»
Product_view_definition

of_product

-id
-description

«entity»
Product_version

defined_version

«entity»
Requirement_version

«entity»
System_version

«entity»
Requirement_view_definition

«entity»
System_view_definition

defined_version
{redefines defined_version}

of_product
{redefines of_product}

of_product
{redefines of_product}

defined_version
{redefines defined_version}
208 SysML Specification v. 1.0 alpha

• Product: Defines the identity of a product with an unique identifier, a name and a description

• Product_version: Captures the different versions of a product, each version is described by an identifier and a name

• Product_view_defintion: Defines the different views in which the product appears, e.g. a diagram or a table

This means that every product is represented in a tree-like manner in an AP233 file.

For each product a tree-like information is given in the AP233 file: For each product an instance of Product is the root. Each
product may appear in different versions (Product_version) and each version may appear and be reference from different
views (Product_view_definitoni).

Each product which shall be captured in AP233 this pattern has to be re-used. The re-use of this pattern will be done in AP233
via inheritance. Therefore a requirement is represented by the entities Requirement, Requirement_version and
Requirement_view_definition. All of them are derived from the according product items. This means a

• Requirment ‘is a’ Product

• Requirment_version ‘is a’ Product_version’

• Requirement_view_definition ‘is a’ Produc_view_definition

The definition of a system is done accordingly which is shown in the diagram. For other items such as connectors or ports this
pattern has to be replicated too in the same way.

The assignment of properties to a product is shown in Appendix F-9. Proptiertes are additional descriptions or parameters
which have to be attached to a product. Those properties can be for example descriptions, role or context definitions. For a
SysML requirement the attributes as defined in Appendix F-7 (id, text and criticality) would be attached as property. As
explained per above the Product_view_definition is used to attach the detailed information to the requirement.

The top of the diagram shows Product_view_definition and its derived classes Requirement_view_definition and
System_view_definition. The property_assigment_select is used to attach the properties either to Produc_view_definition or to
Tracing_relationship. Element_property describes the property being attached. The select statement represented_item_select
contains just one choice, the Element_property. The class property representation describes the representation for the property
attached. The class Representation gives detailed information on the representation occurrence of the property. It can be
broken down hierarchically (Represenation_relationship) and has links to the different representation items
(Representation_item).

The different representation items are further detailed in Appendix F-10. It shows the hierarchy of the different represenations:
Data_structure, Element_in_structure, String_representation_item, Binary_representation_item, Document_definition,
Mathematical_representation_item, Property_value_with_unit, Descriptive_property_value and Plain_text_item. It is
possible to arrange the different representation items in data structures. A data structure consists of elements, an element of a
data structure can be for example Binary_representation_item, Document_definition, Mathematical_representation_item,
Property_value_with_unit or a Descriptive_property_value.

This represention module of AP233 described here is just a subset of the AP233 representation.
SysML Specification v. 1.0 alpha 209

Figure F-9. Property assignment

-described_element
-description
-name

«entity»
Element_property

-described_element
-description
-name

«select»
property_assignment_select

described_element

-name
-description
-id

«entity»
Representation

items

-role
-description

«entity»
Property_representation

property

«select»
represented_item_select

rep

-id
-description
-name

«entity»
Product_view_definition

«entity»
Tracing_relationship

-description
-relationship_type

«entity»
Representation_relationship

rep_1

rep_2

-described_element
-description
-name

«entity»
Representation_item

«entity»
Requirement_view_definiton

«entity»
System_view_definition
210 SysML Specification v. 1.0 alpha

Figure F-10. Representation of properties in AP233

-described_element
-description
-name

«entity»
Representation_item

-position

«entity»
Element_in_structure

-description

«entity»
Data_structure

-label
-size

«entity»
Data_structure_dimension

dimension
elements

elements

«select»
data_structure_element

elements

structure

elements

-description

«entity»
Descriptive_property_value

«entity»
Mathematical_representation_item

-description

«entity»
Plain_text_item

«entity»
String_representation_item

-encoded_data
-MIME_extension
-MIME_type

«entity»
Binary_representation_item

-id
-description
-associated_document_version

«entity»
Document_definition

-property_value
-unit

«entity»
Property_value_with_unit
SysML Specification v. 1.0 alpha 211

The hierachical breakdown structure of AP233 is shown in Appendix F-11. As explained per above the hierarchical
breakdown structure will also be applied to the corresponding view definition items (e.g. Requirement_view_definition,
System_view_definition, ...). The View_definition_relationship provides a hierarchial decomposition for
Product_view_definition items. View_definition_relationship will be further refined for the items derived from
Product_view_definition.

The class Requirement_view_definition, derived from Product_view_definition is used to represted the links to the
requirements. As explained before it is used to attache the properties to the requirement. It is also used to define the
hierarchical breakdown structure for requirements, called traceability links. The traceablility links are established by the item
Tracing_relationship. It connects derived requirements on different hierarchical levels to each other.

System_view_definition represents items of the system hierarchy. System_view_definitions can be hierachically linked to each
other (System_view_definition_relationship). Important to mention that System_view_definition itself is an abstract class and
will be further detailled in the subsequent diagrams.

Allocations between requirements and system items are represented by System_requirement_relationship.

In diagram Appendix F-12 the different system breakdown hierarchies are shown. The class System_design represents
system design items and is derived from System_view_definition. System design items can be seen as items on the
specification (design) level. System design items can be hierarchically decomposed (System_assembly_relationship).

Concrete physical items are represented by System_occurrence (It can be seen as a class (System_design) and instance
(System_occurence) releationship for object oriented systems). The items on design levels represent the ‘shall-by’ status
of a system. The system occurence items do represent real existing items (‘with serial numbers’).

The physical assembly of a system follows the design items hierarchy, but is not necessarily the same, due to integration
constraints. Therfore another breakdown is required to show how the system must be assembled, often called integration
tree. Integration tree links are established by System_occurrence_assembly items. System_occurrence items have a link to
System_view_definition items to show which part of the system they represent.

All of the items used to represent system hierarchy links (System_occurrence_relationship,
System_view_definition_relationship and System_assembly_relationship) are derived from View_definition_relationship.
212 SysML Specification v. 1.0 alpha

Figure F-11. Breakdown structure in AP233

relating_view
{redefines relating_view}

relating_view
{redefines relating_view}

-id
-description
-name

«entity»
Product_view_definition

«entity»
Requirement_view_definition

«entity»
System_view_definition

-id
-description
-name

«entity»
Tracing_relationship

-id
-description
-relation_type

«entity»
View_definition_relationship

relating_viewrelated_view

«entity»
System_view_definition_relationship

«entity»
System_requirement_relationship

related_view
{redefines related_view}

related_view
{redefines related_view}

relating_view
{redefines relating_view}

relating_view
{redefines relating_view}
SysML Specification v. 1.0 alpha 213

Figure F-12. System breakdown hierarchy

-id
-description
-name

«entity»
Product_view_definition

«entity»
System_view_definition

-id
-description
-relation_type

«entity»
View_definition_relationship

relating_view

related_view

relating_view
{redefines relating_view}

«entity»
System_view_definition_relationship

-complete

«entity»
System_design

-id
-description
-name

«entity»
System_assembly_relationship

related_view
{redefines related_view}

relating_view
{redefines relating_view}

related_view
{redefines related_view}

related_view
{redefines related_view}

relating_view
{redefines relating_view}

«entity»
System_usage

«entity»
Product_occurrence

design

«entity»
System_occurrence

design

«entity»
System_occurence_assembly
214 SysML Specification v. 1.0 alpha

F.4.3 Mapping Module: Requirements

Figure F-13. Mapping Module Requirements

In Appendix F-13 the requirements part of the mapping model is shown. The main difference to the SysML and the
AP233 model is the following: The mapping model doesn’t address any specify data modeling items and makes not re-use
of UML infra- or superstructure definition. Therfore the mapping model can be seen as an independent instance of the
MOF. It serves as a kind of requirements model for system engineering conceptst.

-text
-id
-criticality

Requirement

1

+subrequirement *

ReqTrace

target

r0

source

r1

ReqVerification

ReqSatisfaction

satisfies
reqreq

verifies

«select»
ReqSatisfySelect

req
satisfies

Function

Component

Interface

«select»
ReqVerifySelect

tests

req

TestCase

Review
SysML Specification v. 1.0 alpha 215

Requirement hierarchies are indicated with ReqTrace, which connects requirements on different hierachical levels. A
requirement can be linked to verification elements (ReqVerification) and system modeling elements (ReqSatisfaction). On
the left hand side two examples for a requirement verifcation are shown (TestCase, Review). On the reight hand side
different elements which can satisfy a requirements (Function, Component, Interface). Both, verification as well as
system elements are just a deliberate selection and not exhaustive.

It is import to mention that, in order to ease the mapping, that the ‘select’ statement of Express has been reused. All of
the different choices for example for the requirement satisfaction are listed explicitly, similiar to Express.

F.4.4 Mapping between AP233 and SysML

F.5 Proof of Concept
ISO10303 STEP application protocols provide a neutral data representation which can be used to collect the data from
different tools and capture them in an independent data repository. For this STEP protocols have to provide a generic superset
of data items used by the tools. This and some addional concepts required for efficient data modeling STEP application
protocols are considered to be ‘complicated’ and difficult to integration into an existing infrastructure. Therefore nowadays
often short-handed XML solutions are preferred instead of integrating STEP.

Table 1

SysML Mapping Model AP233

010 Requirement Requirement Requirement
Requirement_version
Requirement_view_definition

011 text text Plain_text_item

012 id id Requirement.id

013 criticality criticality Plain_text_item

020 Trace ReqTrace Tracing_relationship

021 target r0 relating_view

022 source r1 related_view

030 RequirementVerification ReqVerification

031 target verifies

032 source req

040 RequirementSatisfaction ReqSatisfaction System_requirement_relationship

041 target satisfies relating_view

042 source req related_view
216 SysML Specification v. 1.0 alpha

In order to hide the complexity often a more abstract model (and a related API) is placed on top of STEP protocols. Those
APIs do focus on user known concepts and are therefore easier to understand and integrated. But still using the power of STEP
as the underlying data model. The mapping model, well mapped to AP233 is high-level model of system engineering concepts.

As both the AP233 and the mapping model are represented in UML they can be used to derive APIs applying the MDA
approach to it. In order to obtain an open, robust framework two independent APIs will be generated. One on the AP233 native
level and one on the mapping (conceptual) level. This approach also can be used to in cooperate other tools. In Figure F-14 the
different models and APIs are shown.

The resulting API architecture is shown in the Figure F-15. It shows the different layer of abstraction from the bottom (in this
case a STEP file in different representations) to the top different SE tools. The yellow layers show the two different APIs. As
examples for tools we see on the top SysML tools, or UML tools which implements selected parts of SysML in terms of
profiles and classic SE tools which have nothing in common (with respect to the meta-model) with UML based tools. The
mapping model API provides an easy to integrate API based on the conceptual level. In order to integrate it an adaptor has to
be written which converts the model (as instance of the meta model) into the representation of the mapping model. For SysML
tools this converter can be written based on the mapping model. Based on the mapping between the mapping model and the
AP233 model the adaptor can be automatically generated. Finally, the AP233 API supports the conversion between the model
and file representations. The representation as instance of the model to the file representation.

Figure F-14. Model-derived APIs

<<C++>>
AP233 API

<<MetaModel>>
SysML

<<MetaModel>>
MappingModel

<<MetaModel>>
AP233 (UML)

<<mapping>>

<<mapping>>

<<C++>>
Systems Eng.
High Level API

<<generated>>

<<generated>>
SysML Specification v. 1.0 alpha 217

Figure F-15. API abstraction layers

AP233/p28 File (XML) AP233/p21 File (STEP)

Map AP233 Data 2 XML Map AP233 data 2 p21

AP233 API

Map Mapping Model data 2 AP233

Mapping Model based API

SysML Tool(s)

Map SysML data 2 M-
Model

Map UML2 data 2 M-
Model

UML/SysMLprofile Tools SE Tool(s)

Map SE data 2 M-Model

Alignment Working Group Scope
218 SysML Specification v. 1.0 alpha

Appendix G. Requirements Traceability Matrix

G.1 Overview
A Requirements Tracability Matrix (RTM) that shows how SysML satisfies the requirements of the UML for Systems
Engineering RFP is available is a separate support document (Compliance and Requirements Traceability for SysML v.
1.0a). See Section 5.1, “Support Documents,” on page 8 for support document availability.
SysML Specification v. 1.0 alpha 219

220 SysML Specification v. 1.0 alpha

Index
A
Action 50, 82
Activity 54, 60
ActivityEdge 53
ActivityFinal 50
ActivityNode 50
ActivityPartition 54
Actor 88
Aggregation 31
Allocate 109
Allocated 110
Allocation 107, 108, 111
Association 31

B
Binding 40, 41
Block 29, 33, 35
BlockDefinition 29

C
Choice 82
CombinedFragment 73
Comment 128
Communication 88
Complex 122, 125
Composite 82
Composition 31, 94
Conform 116, 118
Connector 31
Constraint 128
Containment 31
Continuous 57
ControlFlow 53, 61
ControlNode 50
ControlOperator 50
ControlValue 58, 122, 123
Coregion 73
Crosscutting 91

D
DataType 29
DecisionNode 50
definition/usage dichotomy 39
defintion/usage dichotomy 25, 27
Dependency 129
Derive 94, 96, 189, 190
DestructionEvent 73
Duration 74

E
Entry 82
Enumeration 128
ExecutionSpecification 72
Exit 82
Extend 88
Extension 137

F
Final 82

FinalNode 50
FlowFinal 50
FlowPort 29, 34
FlowSpecification 30, 35
ForkNode 50
formalism 23
Found 75

G
Generalization 31, 137

H
History 82

I
Include 88
Initial 83
InitialNode 51
InteractionUse 72
Interface 30
Internal 36
InterruptibleActivityRegion 55
isControl 53
isStream 53

J
JoinNode 51
Junction 83

L
Lifeline 72
Lost 74

M
Measures of Effectiveness 152
MergeNode 51
Message 74
Metaclass 136
Model 136, 138, 139

N
natural language 24
NoBuffer 52
Non 30

O
ObejctNode 54
ObjectFlow 54
ObjectNode 51, 62
OptimizationDirectionKind 191
Optional 53, 59
OverWrite 52

P
Package 115
PackageAccess 116
PackageContainment 116
PackageDiagram 115
PackageImport 116
ParameterSet 55
Parametric 40, 43
ParametricConstraint 42
ParametricConstraintUse 43
SysML Specification 221

Part 30
Probability 53, 59
Problem 129
Profile 136
ProfileApplication 137

R
Rate 52, 60
Rationale 129
Real 122
Realization 31
Receive 83
Region 83
Requirement 94, 97
RequirementKind 97, 122, 123
Requirements 99
Requirements Traceability Table 99
RiskKind 97, 122, 124

S
Satisfy 94, 98
Send 83
Sequence 72
ServicePort 31
Simple 83
State 83
StateInvariant 73
Stereotype 136
Subject 88
Submachine 84

T
Table 111
TestCase 94, 98
Time 74
Trace 116
Trade 152
Trade Study 152
Transition 84

U
Unidirectional 137
Use 88

V
ValueProperty 129
ValueType 129, 132
Verdict 98, 122, 124
Verify 94, 98
VerifyMethodKind 99, 122, 124
View 115, 118
Viewpoint 116, 118
222 SysML Specification

	Systems Modeling Language (SysML) Specification
	Preface
	0.1 CHANGE SUMMARY
	0.2 OMG RFP RESPONSE
	0.2.1 Part I of RFP Response
	0.2.2 Part II of RFP Response
	0.2.3 Part III of RFP Response

	Table of Contents
	Part I. Introduction
	1 Scope
	2 Compliance
	2.1 Compliance to the SysML specification
	2.2 Compliance of SysML to UML

	3 References
	3.1 Normative References
	3.2 Non-Normative References

	4 Terms and definitions
	5 Additional information
	5.1 Support Documents
	5.2 Relationships to Other Standards
	5.3 How to Read this Specification
	5.4 Acknowledgements

	6 Language Architecture
	6.1 Design Principles
	6.2 Package structure
	6.3 Extension Mechanisms
	6.4 4-Layer Metamodel Architecture
	6.5 Alignment with XMI and AP-233

	7 Language Formalism
	7.1 Level of Formalism
	7.2 Chapter Specification Structure
	7.3 Use of Constraints
	7.4 Use of Natural Language
	7.5 Conventions and Typography

	Part II - Structural Constructs
	8 Blocks
	8.1 Overview
	8.2 Diagram elements
	8.3 Package structure
	8.4 UML extensions
	8.4.1 Stereotypes
	8.4.1.1 Block
	8.4.1.2 FlowPort
	8.4.1.3 FlowSpecification
	8.4.1.4 ServicePort

	8.4.2 Diagram extensions
	8.4.2.1 Block Definition diagram
	8.4.2.2 Internal Block diagram

	8.5 Usage examples

	9 Parametric Constraints
	9.1 Overview
	9.2 Diagram elements.
	9.3 Package structure
	9.4 UML extensions
	9.4.1 Stereotypes
	9.4.1.1 Binding
	9.4.1.2 ParametricConstraint
	9.4.1.3 ParametricConstraintUse

	9.4.2 Diagram extensions
	9.4.2.1 Parametric diagram

	9.5 Usage examples

	Part III - Behavioral Constructs
	10 Activities
	10.1 Overview
	10.2 Diagram elements
	10.3 Package structure
	10.4 UML extensions
	10.4.1 Stereotypes
	10.4.1.1 Continuous
	10.4.1.2 ControlValue (a predefined enumeration)
	10.4.1.3 ControlOperator
	10.4.1.4 Discrete
	10.4.1.5 NoBuffer
	10.4.1.6 Overwrite
	10.4.1.7 Optional
	10.4.1.8 Probability
	10.4.1.9 Rate

	10.4.2 Diagram extensions
	10.4.2.1 Activity
	10.4.2.2 ControlFlow
	10.4.2.3 ObjectNode

	10.5 Usage examples

	11 Sequences
	11.1 Overview
	11.2 Diagram elements
	11.3 Package structure
	11.4 UML extensions
	11.5 Usage examples

	12 State Machines
	12.1 Overview
	12.2 Diagram elements
	12.3 Package structure
	12.4 UML extensions
	12.5 Usage examples

	13 Use Cases
	13.1 Overview
	13.2 Diagram elements
	13.3 Package structure
	13.4 UML extensions
	13.5 Usage examples

	Part IV - Crosscutting Constructs
	14 Requirements
	14.1 Overview
	14.2 Diagram elements
	14.3 Package structure
	14.4 UML extensions
	14.4.1 Stereotypes
	14.4.1.1 Derive
	14.4.1.2 Requirement
	14.4.1.3 RequirementKind (user defined enumeration)
	14.4.1.4 RiskKind (user defined enumeration)
	14.4.1.5 Satisfy
	14.4.1.6 TestCase
	14.4.1.7 Verdict (a user defined enumeration)
	14.4.1.8 Verify
	14.4.1.9 VerifyMethodKind (user defined enumeration)

	14.4.2 Table extensions

	14.5 Usage examples

	15 Allocations
	15.1 Overview
	15.2 Diagram elements
	15.3 Package structure
	15.4 UML extensions
	15.4.1 Stereotypes
	15.4.1.1 Allocate
	15.4.1.2 Allocated

	15.4.2 Diagram extensions
	15.4.3 Table extensions

	15.5 Usage examples

	16 Model Management
	16.1 Overview
	16.2 Diagram elements
	16.3 Package structure
	16.4 UML extensions
	16.4.1 Stereotypes
	16.4.1.1 Conform
	16.4.1.2 View
	16.4.1.3 Viewpoint

	16.4.2 Diagram extensions

	16.5 Usage examples

	17 Types
	17.1 Overview
	17.2 Diagram elements
	17.3 Package structure
	17.4 UML extensions
	17.4.1 Enumerations
	17.4.1.1 ControlValue
	17.4.1.2 RequirementKind
	17.4.1.3 RiskKind
	17.4.1.4 Verdict
	17.4.1.5 VerifyMethodKind

	17.4.2 DataTypes
	17.4.2.1 Complex
	17.4.2.2 Real

	17.5 Usage examples

	18 Auxiliary Constructs
	18.1 Overview
	18.2 Diagram elements
	18.3 Package structure
	18.4 UML extensions
	18.4.1 Stereotypes
	18.4.1.1 DistributedValue
	18.4.1.2 Problem
	18.4.1.3 Rationale
	18.4.1.4 ValueProperty
	18.4.1.5 ValueType

	18.4.2 Diagram extensions

	18.5 Usage examples

	19 Profiles & Model Libraries
	19.1 Overview
	19.2 Diagram elements
	19.3 Package Structure
	19.4 UML extensions
	19.4.1 Metaclass extensions
	19.4.2 Diagram extensions
	19.4.2.1 Stereotype

	19.5 Usage examples
	19.5.1 Defining a Profile
	19.5.2 Adding Stereotypes to a Profile
	19.5.3 Defining a Model Library that uses a Profile
	19.5.4 Guidance on whether to use a Stereotype or Class
	19.5.5 Using a Profile
	19.5.6 Using a Stereotype
	19.5.7 Using a Model Library Element

	Part V - Appendices
	Appendix A. Diagrams
	A.1 Overview.

	Appendix B. Sample Problem
	B.1 Overview
	B.2 Problem Summary
	B.3 Diagrams
	B.3.1 Requirements Diagram for the “Hybrid SUV”
	B.3.2 Trade Study and Measures of Effectiveness
	B.3.3 Requirements Derivation
	B.3.4 Requirements Verification
	B.3.5 Use Case Diagram
	B.3.6 Sequence Diagrams
	B.3.7 Activity Diagram for “Control Power”
	B.3.8 External Block Diagram for the Hybrid SUV
	B.3.9 Transmission Properties
	B.3.10 Allocations
	B.3.11 Block Diagram
	B.3.12 Interfaces
	B.3.13 State Machine Diagram for the Transmission “Shift” behavior
	B.3.14 Parametric Block Diagram
	B.3.15 Requirements Satisfaction
	B.3.16 Complete Traceability

	Appendix C. Non-Normative Extensions
	C.1 Activities
	C.1.1 Overview
	C.1.2 Diagram Elements
	C.1.3 Package Structure
	C.1.4 UML Extensions
	C.1.4.1 Stereotypes
	C.1.4.2 Diagram Extensions

	C.1.5 Usage Examples

	C.2 Requirements
	C.2.1 Overview
	C.2.2 Diagram elements
	C.2.3 Package Structure
	C.2.4 UML Extensions
	C.2.4.1 Stereotypes
	C.2.4.2 Diagram Extensions

	C.2.5 Compliance Level
	C.2.6 Usage Example

	Appendix D. Non-Normative Model Library
	D.1 Pre-defined ValueTypes
	D.2 Pre-defined Enumeration Literals

	Appendix E. OMG XMI Model Interchange
	E.1 Overview

	Appendix F. ISO AP233 Model Interchange
	F.1 Overview
	F.2 Background
	F.3 Approach
	F.3.1 Capturing Express models in UML
	F.3.2 Converting Express models to UML

	F.4 Model Alignment
	F.4.1 SysML Requirements Model
	F.4.2 AP233 Requirements Model
	F.4.3 Mapping Module: Requirements
	F.4.4 Mapping between AP233 and SysML

	F.5 Proof of Concept

	Appendix G. Requirements Traceability Matrix
	G.1 Overview

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

