
Date: 10 January 2005

Systems Modeling Language (SysML) Specification

version 0.9
DRAFT

SysML Partners (www.sysml.org)
American Systems Corporation
ARTISAN Software Tools*
BAE SYSTEMS
The Boeing Company
Ceira Technologies
Deere & Company
EADS Astrium GmbH
EmbeddedPlus Engineering
Eurostep Group AB
Gentleware AG*
I-Logix*
International Business Machines*
International Council on Systems Engineering
Israel Aircraft Industries
Lockheed Martin Corporation
Mentor Graphics
Motorola*
National Aeronautics and Space Administration
National Insitute of Standards and Technology
Northrop Grumman
oose.de Dienstleistungen für innovative Informatik GmbH
PivotPoint Technology Corporation
Popkin Software
Raytheon Company
Structured Software Systems Limited
Telelogic AB*
THALES*
Vitech Corporation

* Submitter to OMG UML for Systems Engineering RFP

COPYRIGHT NOTICE

© 2003-2005 American Systems Corporation
© 2003-2005 ARTISAN Software Tools
© 2003-2005 BAE SYSTEMS
© 2003-2005 The Boeing Company
© 2003-2005 Ceira Technologies
© 2003-2005 Deere & Company
© 2003-2005 EADS Astrium GmbH
© 2003-2005 EmbeddedPlus Engineering
© 2003-2005 Eurostep Group AB
© 2003-2005 Gentleware AG
© 2003-2005 I-Logix, Inc.
© 2003-2005 International Business Machines
© 2003-2005 International Council on Systems Engineering
© 2003-2005 Israel Aircraft Industries
© 2003-2005 Lockheed Martin Corporation
© 2003-2005 Motorola, Inc.
© 2003-2005 Northrop Grumman
© 2003-2005 oose.de Dienstleistungen für innovative Informatik GmbH
© 2003-2005 PivotPoint Technology Corporation
© 2003-2005 Raytheon Company
© 2003-2005 Telelogic AB
© 2003-2005 THALES

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

This document describes a proposed language specification developed by an informal partnership of vendors and users,
with input from additional reviewers and contributors. This document does not represent a commitment to implement any
portion of this specification in any company’s products. See the full text of this document for additional disclaimers and
acknowledgments. The information contained in this document is subject to change without notice.

The specification proposes to customize the Unified Modeling Language (UML) specification of the Object Management
Group (OMG) to address the requirements of Systems Engineering. These include many of the requirements requested by
the UML for Systems Engineering RFP, OMG document number ad/03-03-41. This document includes references to and
excerpts from the UML 2.0 Superstructure Specification (OMG document number ptc/2004-10-02) and UML 2.0 Infra-
structure Specification (Final Adopted Specification; OMG document number ptc/2003-09-15) with copyright holders
and conditions as noted in those documents.

LICENSES

Redistribution and use of this specification, with or without modification, are permitted provided that the following
conditions are met:
• Redistributions of this specification must reproduce the above copyright notice, this list of conditions and the

following disclaimer in the documentation and/or other materials provided with the distribution.
• The Copyright Holders listed in the above copyright notice may not be used to endorse or promote products

derived from this specification without specific prior written permission.
• All modified versions of this specification must include a prominent notice stating how and when the

specification was modified.

THIS SPECIFICATION IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SPECIFICATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

TRADEMARKS

Systems Modeling Language and SysML, which are used to identify this specification, are not usable as trademarks since SysML Part-
ners has established their usage to identify this specification without any trademark status or restriction. Organizations that wish to
establish trademarks related to this specification should distinguish them somehow from SysML and Systems Modeling Language, for
example by adding a unique prefix (e.g., OMG SysML).

Unified Modeling Language and UML are trademarks of the OMG. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

Preface for OMG Submission

Editorial Comment: This is a draft of a work in progress that is being made available for public review. Please
provide review feedback to the contacts listed in Section 0.2.

This Systems Modeling Language (SysML) Specification draft is being submitted to the OMG in response to the UML for SE
RFP. Material in this submission that responds directly to the format required by the OMG submission process is localized
entirely within this Preface. By separating the information unique to the OMG technical process and submission format, and
referencing the applicable portions of the technical specification, we are able to organize the specification in a form that can
facilitate further stages of the OMG technology adoption and ISO Publicly Available Specification (PAS) processes.

OMG RFP RESPONSE

 The following SysML Partners are current OMG members who have submitted Letters of Intent to the OMG to respond to its
UML for SE RFP: ARTISAN Software Tools, Gentleware, IBM, I-Logix, Motorola, Telelogic, and THALES.

The information required by Section 4.9.2 (“Required Outline”) of the UML for SE RFP is provided in the following
parts.

PART I of RFP Response

0.1 Copyright Waiver and Trademark Usage
An unlimited number of copies of this document may be made by OMG or by OMG members in accordance with the Berke-
ley-style open source license described in the Licenses section that precedes this Preface. Note that the copyrights for this
specification are shared by a group of companies, some of whom are not current OMG members.

As noted in the Trademarks section that precedes this preface, Systems Modeling Language and SysML, which are
used to identify this specification, are not usable as trademarks since SysML Partners has established their usage to identify
this specification without any trademark status or restriction. Organizations that wish to establish trademarks related to this
specification should distinguish them somehow from SysML and Systems Modeling Language (for example, by adding a
unique prefix such as OMG SysML.

0.2 Submission contact points
The following persons may be contacted for information regarding this submission:

Cris Kobryn (Cris.Kobryn@sysml.org OR Cris.Kobryn@telelogic.com)

Sanford Friedenthal (Sanford.Friedenthal@sysml.org OR Sanford.Friedenthal@lmco.com)

In addition, the following public mailing list is available for providing feedback and requesting information about this specifi-
cation: SysMLforum@googlegroups.com.

0.3 Guide to material in the submission
An overview of the background, goals and technical content of this proposal is described in Chapter 1 “Scope” of this docu-
ment.
SysML Specification v. 0.90 (Draft) i

0.4 Overall design rationale
The design rationales for the language architecture and the specification approach used by this proposal are provided in Chap-
ter 7 “Language Architecture” and Chapter 8 “Language Formalism” of this document.

0.5 Statement of proof of concept
This proposed specification is in the process of being prototyped or implemented by more than one of the submitting organiza-
tions.

0.6 Resolution of RFP requirements and requests
The proposed specification makes use of existing OMG specifications and follows OMG guidelines in conformance with Sec-
tion 5 “General Requirements on Proposals” of the RFP.

 Section 6.5 “Mandatory Requirements” of the RFP requires a specific form of matrix that indicates how the proposed
solution satisfies each of numbered requirements in the “Specific Requirements on Proposals” section of the RFP. The
requirements traceability matrix in Appendix E addresses this requirement, and is included in this section by reference to
the Appendix.

0.7 Response to RFP issues to be discussed.
Section 6.7 of the RFP, “Issues to be discussed” contains a single issue, which requests a sample problem description as fol-
lows:

Submissions shall include models of one or more sample problems to demonstrate how their customization of UML for
SE addresses the requirements of this RFP. The submitter may select one or more sample problems of their choosing,
or apply their proposed solution to the sample problem descriptions included on the RFP page at http://syseng.omg.org/
UML_for_SE_RFP.htm. The compliance matrix referred to in Section 6.5, must include a reference to the portion of
the sample problem, which demonstrates how each requirement is being addressed.

The response to this “Issue to be discussed” is provided in Appendix B “Sample Problem” of this document.

PART II of RFP Response

0.8 Proposed specification
The proposed specification is contained in the body of this document (including appendices). This specification includes both
normative and explanatory material in a format that is largely self-contained and which could be adopted and published in con-
formance with the OMG process.

0.9 Proposed compliance points
Proposed compliance points are described in Chapter 2 “Compliance” of this specification.

PART III of RFP Response

0.10 Summary of requests versus requirements
See Section 0.6 in this Preface.
ii SysML Specification v. 0.90 (Draft)

0.11 Changes or extensions required to adopted OMG specifications
See Section 6.1.
SysML Specification v. 0.90 (Draft) iii

iv SysML Specification v. 0.90 (Draft)

Table of Contents

Preface for OMG Submission ..i
0.1 Copyright Waiver and Trademark Usage ... i
0.2 Submission contact points .. i
0.3 Guide to material in the submission.. i
0.4 Overall design rationale ... ii
0.5 Statement of proof of concept.. ii
0.6 Resolution of RFP requirements and requests.. ii
0.7 Response to RFP issues to be discussed. .. ii
0.8 Proposed specification... ii
0.9 Proposed compliance points.. ii
0.10 Summary of requests versus requirements ... ii
0.11 Changes or extensions required to adopted OMG specifications... iii

Part I. Introduction ..xi
1 Scope .. 1
2 Compliance ... 1
3 Normative references .. 5
4 Terms and definitions .. 5
5 Symbols ... 28
6 Additional information .. 28

6.1 Relationships to Other Standards... 28
6.2 How to Read this Specification ... 28
6.3 Acknowledgements... 28

7 Language Architecture .. 31
7.1 Design Principles .. 31
7.2 Architecture... 31
7.3 Extension Mechanisms... 34
7.4 4-Layer Metamodel Architecture... 35
7.5 AP-233 Alignment... 35

8 Language Formalism ... 37
8.1 Levels of Formalism.. 37
8.2 Chapter Specification Structure .. 37
8.3 Constraints.. 38
8.4 Use of Natural Language.. 38
8.5 Conventions and Typography... 38

Part II - Structural Constructs .. 39
9 Classes .. 41

9.1 Overview... 41
9.2 Diagram elements... 42
9.3 Package structure... 45
9.4 UML extensions .. 45

9.4.1 Stereotypes ... 45
9.4.2 Diagram extensions .. 46

9.5 Compliance levels... 46
9.6 Usage examples ... 47

10 Assemblies .. 49
10.1 Overview... 49
10.2 Diagram elements... 51
SysML Specification v

10.3 Package structure .. 53
10.4 UML extensions .. 53

10.4.1 Stereotypes ... 53
10.4.2 Diagram extensions .. 55

10.5 Compliance levels... 56
10.6 Usage examples ... 56

10.6.1 System hierarchy .. 56
10.6.2 Engineering block diagram example ... 57
10.6.3 Laptop power adapter ... 58
10.6.4 Automobile fuel system ... 59

11 Parametrics ... 61
11.1 Overview... 61
11.2 Diagram elements... 62
11.3 Package structure ... 63
11.4 UML extensions .. 63

11.4.1 Stereotypes ... 63
11.5 Diagram extensions .. 64

11.5.1 Parametric diagram ... 64
11.5.2 Value Binding Constraint shown as a dashed line .. 65

11.6 Compliance levels... 65
11.7 Usage examples ... 65

11.7.1 Definition of parametric constraints on a class diagram .. 65
11.7.2 Usage of parametric constraints on an assembly diagram ... 66
11.7.3 Usage of parametric constraints on a parametric diagram .. 67
11.7.4 System of equations .. 68

Part III - Behavioral Constructs ... 69
12 Activities .. 71

12.1 Overview... 71
12.2 Diagram elements... 72

12.2.1 Diagram elements ... 72
12.3 Package structure ... 78
12.4 UML extensions .. 79

12.4.1 Stereotypes ... 79
12.4.2 Diagram extensions .. 82
12.4.3 Model library .. 84
12.4.4 EFFBD extensions .. 85

12.5 Compliance levels... 86
12.6 Usage examples ... 87

13 Interactions .. 91
13.1 Overview... 91
13.2 Diagram elements... 91
13.3 Package structure ... 95
13.4 UML extensions .. 95
13.5 Compliance levels... 95
13.6 Usage examples ... 96

14 State Machines .. 101
14.1 Overview... 101
14.2 Diagram elements... 101
14.3 Package structure ... 104
14.4 UML extensions .. 104
14.5 Compliance levels... 104
vi SysML Specification

14.6 Usage examples ... 104
15 Use Cases ... 107

15.1 Overview... 107
15.2 Diagram elements... 107
15.3 Package structure... 109
15.4 UML extensions .. 109
15.5 Compliance levels... 109
15.6 Usage examples ... 109

Part IV - Crosscutting Constructs .. 111
16 Requirements .. 113

16.1 Overview... 113
16.2 Diagram elements... 114
16.3 Package structure.. 115
16.4 UML extensions .. 115

16.4.1 Stereotypes ... 115
16.5 Compliance levels... 118
16.6 Usage examples ... 118

16.6.1 Requirement decomposition ... 119
16.6.2 Requirements and design elements .. 120
16.6.3 Verification procedure (Test Case) ... 121
16.6.4 Requirement specialization and properties ... 122

17 Allocations ... 123
17.1 Overview... 123
17.2 Diagram elements... 124
17.3 Package structure... 125
17.4 UML extensions .. 125

17.4.1 Stereotypes ... 125
17.4.2 Diagram extensions .. 127

17.5 Compliance levels... 128
17.6 Usage examples ... 128

17.6.1 Allocations of Actions, Parts, and Classes .. 128
17.6.2 Flow Allocations .. 129
17.6.3 Tabular Representation ... 130

18 AuxiliaryConstructs .. 131
18.1 Overview... 131
18.2 Diagram elements... 131
18.3 Package structure... 134
18.4 UML extensions .. 134

18.4.1 Stereotypes ... 134
18.4.2 Diagram extensions .. 136
18.4.3 Model Libraries .. 136

18.5 Compliance levels... 141
18.6 Usage examples ... 142

18.6.1 Item flows .. 142
18.6.2 Viewpoints ... 144
18.6.3 Real types ... 144
18.6.4 Definition of Quantity subclasses constrained with constant dimensions and units 145
18.6.5 Usage of Quantity and Distribution ... 146
18.6.6 Constant design values ... 146

19 Profiles .. 149
19.1 Overview.. 149
SysML Specification vii

19.2 Diagram elements... 149
19.3 Package structure ... 149
19.4 UML extensions .. 149

19.4.1 Stereotypes ... 149
19.4.2 Diagram extensions .. 149

19.5 Compliance levels... 149
19.6 Usage examples ... 149

Part V - Appendices .. 151
Appendix A. Diagrams ... 153

A.1 Overview... 153
A.2 Guidelines... 157

Appendix B. Sample Problem ... 159
B.1 Purpose .. 159
B.2 Scope ... 159
B.3 Problem Summary.. 159
B.4 Diagrams .. 160

B.4.1 Concept Diagram for the “Vehicle System Operational Context” 160
B.4.2 Class Diagram for the “Vehicle System Operational Context” 161
B.4.3 Requirement Diagram for the “Vehicle System Requirements Flowdown” 162
B.4.4 Use Case Diagram for “Drive Vehicle” .. 163
B.4.5 Interaction Overview Diagram for “Drive Vehicle” ... 164
B.4.6 Swim Lane Diagram for “Control Vehicle Speed” .. 165
B.4.7 Class Diagram for the “Vehicle System Context” .. 166
B.4.8 State Machine Diagram for the “Vehicle System Operate State” 167
B.4.9 Class Diagram for the “Vehicle System Hierarchy” ... 168
B.4.10 Assembly Diagram for the “Power Subsystem” ... 169
B.4.11 Swim Lane Diagram for “Control Power” ... 170
B.4.12 Parametric Diagram for “Vehicle Peformance” .. 171
B.4.13 Timing Diagram for the “Vehicle Performance Timeline” .. 172
B.4.14 Interaction Overview Diagram for “Start Vehicle” .. 173
B.4.15 Sequence Diagram for “Test Vehicle” ... 174
B.4.16 Sequence Diagram for “Monitor Vehicle and Environment” .. 175

Appendix C. Specialized Usages.. 177
C.1 Translating EFFBDs into Activity Diagrams ... 177

C.1.1 Overview ... 177
C.1.2 Teminology and notation ... 177
C.1.3 Examples .. 178

C.2 Allocation Usages... 182
C.2.1 Overview ... 182
C.2.2 Teminology and notation ... 182
C.2.3 Examples .. 185

C.3 Provided and Required Interfaces.. 196
C.3.1 Overview ... 196
C.3.2 Principles .. 197
C.3.3 Relation to DoDAF Views .. 198

Appendix D. Model Libraries.. 201
D.1 Requirements Model Library .. 201

D.1.1 Requirement Taxonomies ... 201
D.1.2 Extending Requirement Attributes .. 202
D.1.3 Extending Requirement Relationships .. 202
D.1.4 Alignment with UML Testing Profile .. 202
viii SysML Specification

D.2 SI Units Model Library.. 204
D.3 Distributions Model Library... 205

D.3.1 Distribution .. 205
Appendix E. Requirements Traceability.. 207
Appendix F. ISO AP233 Alignment... 231

F.1 Background .. 231
F.2 ISO 10303 STEP .. 231
F.3 ISO 10303 / AP233... 232
F.4 Approach .. 235

F.4.1 Capturing Express models in UML .. 236
F.4.2 Converting Express models to UML .. 238

F.5 Model Alignment... 239
F.5.1 SysML Requirements Model ... 239
F.5.2 AP233 Requirements Model ... 241
F.5.3 Mapping Module: Requirements ... 248
F.5.4 Mapping between AP233 and SysML ... 249

F.6 Proof of Concept:.. 249
Appendix G. OMG XMI Alignment .. 253
SysML Specification ix

x SysML Specification

Part I. Introduction
This specification defines a general-purpose modeling language for systems engineering applications, called the Systems
Modeling Language (SysML). SysML supports the specification, analysis, design, verification and validation of a broad
range of complex systems. These systems may include hardware, software, information, processes, personnel, and facilities.

The orgins of the SysML initiative can be traced to a strategic decision by the International Council on Systems Engi-
neering’s (INCOSE) Model Driven Systems Design workgroup in January 2001 to customize the Unified Modeling Lan-
guage (UML) for systems engineering applications. This resulted in a collaborative effort between INCOSE and the Object
Management Group (OMG), which maintains the UML specification, to jointly charter the OMG Systems Engineering
Domain Special Interest Group (SE DSIG) in July 2001. The SE DSIG, with support from INCOSE and the ISO AP 233
workgroup, developed the requirements for the modeling language, which were subsequently issued by the OMG as part of
the UML for Systems Engineering Request for Proposal (UML for SE RFP; OMG document ad/03-03-41) in March 2003.

Currently it is common practice for systems engineers to use a wide range of modeling languages, tools and techniques on
large systems projects. In a manner similar to how UML unified the modeling languages used in the software industry, SysML
is intended to unify the diverse modeling languages currently used by systems engineers.

Since SysML is being defined as a UML 2.0 Profile, SysML reuses the mature syntax and semantics of the second gener-
ation of UML, UML 2.0. As a consequence, systems engineers modeling with SysML and software engineers modeling with
UML 2.0 will be able to collaborate on models of software-intensive systems. This will improve communication among the
various stakeholders who participate in the systems development process and promote interoperability among modeling tools.
It is anticipated that SysML will be customized to model domain specific applications, such as automotive, aerospace, commu-
nications and information systems.

The next two chapters describe the SysML language architecture and the specification approach used to define SysML.
SysML Specification v. 0.90 (Draft) xi

xii SysML Specification v. 0.90 (Draft)

1 Scope

Editorial Comment: This is a draft of a work-in-progress that is being made available for public review. The scope
statement below pertains to the final version of this specification, version 1.0, not the current draft. Please provide
review feedback to the public mailing list described below.

The purpose of this document is to specify Systems Modeling Language (SysML), a new general-purpose modeling language
for systems engineering. This specification documents the concrete syntax (notation), abstract syntax, semantics, and ration-
ales of SysML, and provides examples of how it can be used to solve common systems engineering problems. Its intent is to
specify the langauge so that systems engineering modelers may learn to apply and use SysML, modeling tool vendors may
implement and support SysML, and both can provide feedback to improve future versions. The following public mailing list is
available for providing feedback and requesting information about this specification: SysMLforum@googlegroups.com.

SysML is designed to provide simple but powerful constructs for modeling a wide range of systems engineering prob-
lems. It is particularly effective in specifying requirements, system structure, functional behavior, and allocations during spec-
ification and design phases of systems engineering. The first version of the language does not support decision trees, testing,
complete trade studies, comprehensive verification and validation, or fully executable functional behavior. These gaps may be
addressed in future versions of SysML.

SysML is being aligned with two evolving interoperability standards: the ISO AP-233 data interchange standard for sys-
tems engineering tools and the OMG XMI 2.0 model interchange standard for UML 2.0 modeling tools. While the details of
this alignment are beyond the scope of this specification, overviews of alignment issues and relevant references are furnished
in Appendix F and Appendix G.

The following sections provide background information about this specification, including information about compliance
and a glossary of terms. Instructions to either systems engineers and vendors who read this specification are provided in Sec-
tion 6.2, ’How to Read this Specification’. The main body of this document (Parts II-IV) describes the normative technical
content of the specification. The appendices include additional information to aid in understanding and implementation of this
specification.

2 Compliance

As with UML, the basic units of compliance for SysML are the packages which define the SysML metamodel. A summary of
these packages is provided in Chapter 7, “Language Architecture.” There are two kinds of SysML compliance. The first kind
of compliance is concerned with defining the subset of UML 2 Superstructure (UML) packages required to implement SysML.
The second kind of compliance is concerned with specifying the extent to which a SysML tool implements the SysML
extensions to UML Superstructure.

In order to visulalize the relationship between the UML and SysML languages, consider the Venn diagram shown in Figure 1,
where the sets of language constructs that comprise the UML and SysML languages are shown as the circles marked “UML”
and “SysML”, respectively. The intersection of the two circles, shown by the cross-hatched region marked “UML reused by
SysML,” indicates the UML modeling constructs that SysML re-uses. The compliance matrix in Table 1 below specifies the
UML packages that a SysML tool must reuse in order to implement SysML.

The region marked “SysML extensions to UML” in Figure 1 indicates the new modeling constructs defined for SysML which
have no counterparts in UML, or replace UML constructs. The compliance matrix in Table 2 below specifies two levels of
SysML packages that a SysML tool must implement in order to provide these extensions.

Note that there is also a substantial part of UML 2 that is not required to implement SysML, which is shown by the region
SysML Specification v. 0.90 (Draft) 1

marked “UML not required by SysML.” .

Editorial Comment: Details regarding the SysML package structure and compliance with UML 2 and SysML are still
being sorted out.

The compliance matrix in Table 1 below specifies the UML 2 Superstructure packages that a SysML tool must reuse in order
to implement SysML. Stated otherwise, these UML 2 Superstructure packages must be available for any SysML
implementation. The valid options are shown below. The package structure in the individual chapters also shows which
packages are required for SysML.

• no: SysML does not require this UML package. However, SysML is intended to be compatible with the package if it
is used.

• partial: SysML only requires selected classes from the package.

• complete: SysML requires the complete UML package. Implementation fully complies with the concrete syntax,
abstract syntax, well-formedness rules, and semantics of the package

Table 1 Summary of Which UML 2 Superstructure Packages are Required for SysML

Compliance Level Compliance Point UML Package Required for SysML

Basic (Level 1) All packages complete

Intermediate (Level 2) Actions::IntermediateActions partial

Intermediate (Level 2) Activities::
IntermediateActivities

partial

UML 2

UML 2
Reuse
(1, 2)

 SysML

UML
reused by

SysML

UML
not required

by SysML

SysML
extensions

to UML
2 SysML Specification v. 0.90 (Draft)

Intermediate (Level 2) Activities::
StructuredActivities

partial

Intermediate (Level 2) CommonBehaviors::
Communications

partial

Intermediate (Level 2) CommonBehaviors::Time partial

Intermediate (Level 2) Components::BasicComponents no

Intermediate (Level 2) CompositeStructures::Actions partial

Intermediate (Level 2) CompositeStructures::Ports partial

Intermediate (Level 2) CompositeStructures::
StructuredClasses

partial

Intermediate (Level 2) Deployments::Artifacts no

Intermediate (Level 2) Deployments::Nodes no

Intermediate (Level 2) Interactions::Fragments partial

Intermediate (Level 2) Profiles partial

Intermediate (Level 2) StateMachines::
BehaviorStateMachines

partial

Intermediate (Level 2) StateMachines::
MaximumOneRegion

no

Complete (Level 3) Actions::CompleteActions partial

Complete (Level 3) Activities::CompleteActivities partial

Complete (Level 3) Activities::
CompleteStructuredActivities

partial

Complete (Level 3) Activities::
ExtraStructuredActivities

partial

Complete (Level 3) AuxiliaryConstructs::
InformationFlows

partial

Complete (Level 3) AuxiliaryConstructs::
Models

partial

Complete (Level 3) AuxiliaryConstructs::Templates no

Complete (Level 3) Classes::
AssociationClasses

no

Complete (Level 3) Classes::
PowerTypes

no

Complete (Level 3) CompositeStructures::
Collaborations

no

Table 1 Summary of Which UML 2 Superstructure Packages are Required for SysML
SysML Specification v. 0.90 (Draft) 3

The compliance matrix in Table 2 below specifies the levels of compliance for a tool vendor to comply with the SysML
Specification. The following compliance options are valid:

• no compliance: Implementation does not comply with the concrete syntax, abstract syntax, well-formedness rules,
semantics, and XMI schema of the package.

• basic compliance: Implementation complies with the basic features of the package.

• advanced compliance: Implementation complies with the advanced features of the package.

For an implementation of SysML to comply with a particular SysML package requires complying with any packages on which
the particular package depends. For SysML, this includes not only other SysML packages, but all UML packages on which
the SysML package depends.

Complete (Level 3) Components::
PackagingComponents

no

Complete (Level 3) Deployments::
ComponentDeployments

no

Complete (Level 3) StateMachines::ProtocolStateMachines no

Table 2 Summary of SysML Compliance Points

Compliance Level Compliance Point Valid Options

Basic SysML All packages, all Basic level constructs full, interchange

Basic Activities, Basic level constructs no, partial, full, interchange

Basic Allocations, Basic level constructs no, partial, full, interchange

Basic Assemblies, Basic level constructs no, partial, full, interchange

Basic Auxiliary Constructs, Basic level constructs no, partial, full, interchange

Basic Classes, Basic level constructs no, partial, full, interchange

Basic Interactions, Basic level constructs no, partial, full, interchange

Basic Parametrics, Basic level constructs no, partial, full, interchange

Basic Requirements, Basic level constructs no, partial, full, interchange

Basic State Machines, Basic level constructs no, partial, full, interchange

Basic Use Cases, Basic level constructs no, partial, full, interchange

Advanced All packages, all Advanced level constructs full, interchange

Advanced Activities, Advanced level constructs no, partial, full, interchange

Advanced Allocations, Advanced level constructs no, partial, full, interchange

Advanced Assemblies, Advanced level constructs no, partial, full, interchange

Advanced Axuiliary Constructs, Advanced level
constructs

no, partial, full, interchange

Table 1 Summary of Which UML 2 Superstructure Packages are Required for SysML
4 SysML Specification v. 0.90 (Draft)

3 Normative references

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply.

• UML 2.0 Superstructure Specification

• UML 2.0 Infrastructure Specification

4 Terms and definitions

Editorial Comment: The terms and definitions in this lexicon are still being unified from SysML, UML and INCOSE
sources, and many inconsistencies exist in the current draft. Note that the latest draft of the OMG UML2
Superstructure (ptc/04-10-02) no longer supports a Glossary.

For the purposes of this specification, the terms and definitions given in the following apply. The lexicon contains a mix of
terms and definitions that are being unified from various UML, SysML, and INCOSE sources, including previous OMG UML
glossaries, UML for SE RFP (ad/03-03-41) and the INCOSE MDSD Concept Model Semantic Dictionary (work in progress).

(Note: The following conventions are used in the term definitions below:

• The entries usually begin with a lowercase letter. An initial uppercase letter is used when a word is usually capitalized
in standard practice. Acronyms are all capitalized, unless they traditionally appear in all lowercase.

• When one or more words in a multi-word term is enclosed in brackets, it indicates that those words are optional when
referring to the term. For example, use case [class] may be referred to as simply use case.

• A phrase of the form “Contrast: <term>” refers to a term that has an opposed or substantively different meaning.

• A phrase of the form “See: <term>” refers to a related term that has a similar, but not synonymous meaning.

• A phrase of the form “Synonym: <term>” indicates that the term has the same meaning as another term, which is ref-
erenced.

• A phrase of the form “Acronym: <term>” indicates that the term is an acronym. The reader is usually referred to the
spelled-out term for the definition, unless the spelled-out term is rarely used.)

• A term followed by [UML for SE RFP] or a phrase preceded by [UML for SE RFP] has been added to the UML 2

Advanced Classes, Advanced level constructs no, partial, full, interchange

Advanced Interactions, Advanced level constructs no, partial, full, interchange

Advanced Parametrics, Advanced level constructs no, partial, full, interchange

Advanced Requirements, Advanced level constructs no, partial, full, interchange

Advanced State Machines, Advanced level constructs no, partial, full, interchange

Advanced Use Cases, Advanced level constructs no, partial, full, interchange

Table 2 Summary of SysML Compliance Points
SysML Specification v. 0.90 (Draft) 5

glossary to integrate the definitions referenced in the UML for SE RFP (ad/03-03-41).

• A term followed by [SysML] or a phrase preceded by [SysML] means that this term was not originally in the UML
for SE Definitions List but it is an additional definition introduced by SysML. <*> means the term or definition has
been modified from the original definition. The modification is noted in italics.

• A term followed by [UML 2 UPDATE] or a phrase preceded by [UML 2 UPDATE] means that it was added to the
glossary based on the original supersturcture specification.

abstract class
A class that cannot be directly instantiated. Contrast: concrete class.
abstraction
The result of empasizing certain features of a thing while de-emphasizing other features that are not relative. An
abstraction is defined relative to the perspective of the viewer.
action
A fundamental unit of behavior specification that represents some transformation or processing in the modeled
system, be it a computer system or a real-world system. Actions are contained in activities, which provide their
context. See: activity. [UML for SE RFP: A non-interruptible function. Note: An action represents an atomic unit of
processing or work. Actions may be continuous or discrete. Discrete actions may or may not be assumed to
execute in zero time. See function.]
action sequence
An expression that resolves to a sequence of actions. [UML for SE RFP: See scenario.]
action state
A state that represents the execution of an atomic action, typically the invocation of an operation.
activation
The initiation of an action execution. [UML for SE RFP: See activation/deactivation event, control input.]
activation/deactivation event [UML for SE RFP]
An event that occurs when a function is activated or deactivated. See activation, control input.
activation/deactivation requirement [UML for SE RFP]
The activation or deactivation that one or more functions must satsify when specified events and conditions occur.
See requirement.
activation/deactivation rules [UML for SE RFP]
The logic which determines when one or more functions are activated and deactivated.
activation time [UML for SE RFP]
The interval of time that a function or state is active. See time expression.
active class
A class whose instances are active objects. See: active object.
active object
An object that may execute its own behavior without requiring method invocation. This is sometimes referred to as
“the object having its own thread of control.” The points at which an active object responds to communications from
other objects are determined solely by the behavior of the active object and not by the invoking object. This implies
that an active object is both autonomous and interactive to some degree. See: active class, thread.
activity
A specification of parameterized behavior that is expressed as a flow of execution via a sequencing of subordinate
units (whose primitive elements are individual actions). See actions. [UML for SE RFP: 1) One or more related
actions. 2) [SysML: Usage of a function. See action, function.]
activity diagram
A diagram that depicts behavior using a control and data-flow model.
activity partition
NEW: See partition - definition 1.
actor
A construct that is employed in use cases that define a role that a user or any other system plays when interacting
6 SysML Specification v. 0.90 (Draft)

with the system under consideration. It is a type of entity that interacts, but which is itself external to the subject.
Actors may represent human users, external hardware, or other subjects. An actor does not necessarily represent
a specific physical entity. For instance, a single physical entity may play the role of several different actors and,
conversely, a given actor may be played by multiple physical entities. [UML for SE RFP: See environment, user.]
actual parameter
Synonym: argument.
aggregate
A class that represents the “whole” in an aggregation (whole-part) relationship. See: aggregation.
aggregation
A special form of association that specifies a whole-part relationship between the aggregate (whole) and a
component part. See: composition. [UML for SE RFP: See decomposition.]
allocated element [SysML]
A stereotype of an element that is the client or supplier of an allocation with properties allocatedFrom or
allocatedTo. See allocation.
allocation [SysML]
A stereotype on a usage dependency that represents a mapping between one set of model elements (supplier) and
another (client). The mapping is often performed as part of the design process to refine the design. Typical
examples of allocation include allocation of functions to components, logical to physical components, flows to
connectors, and software to hardware. The allocation of requirements to components is generally accomplished
using the SysML satsify relationship. See allocated element.
analysis
The phase of the system development process whose primary purpose is to formulate a model of the problem
domain that is independent of implementation considerations. Analysis focuses on what to do; design focuses on
how to do it. Contrast: design. [UML for SE RFP: The process of evaluating elements, properties and associated
relationships.]
analysis model [UML for SE RFP]
A model used to analyze the structure, behavior, and/or properties of systems and environments.
analysis time
Refers to something that occurs during an analysis phase of the software development process. See: design time,
modeling time.
AP-233 [UML for SE RFP]
ISO STEP Application Protocol for Systems Engineering Data Interchange Standard
argument
A binding for a parameter that is resolved later. An independent variable.
artifact
A physical piece of information that is used or produced by a development process. Examples of Artifacts include
models, source files, scripts, and binary executable files. An artifact may constitute the implementation of a
deployable component. Synonym: product. Contrast: component.
assembly [SysML]
A class that describes a structure of interconnected parts.
association
A relationship that may occur between instances of classifiers.
association class
A model element that has both association and class properties. An association class can be seen as an
association that also has class properties, or as a class that also has association properties.
association end
The endpoint of an association, which connects the association to a classifier.
attribute
A structural feature of a classifier that characterizes instances of the classifier. An attribute relates an instance of a
classifier to a value or values through a named relationship.
auxiliary class
SysML Specification v. 0.90 (Draft) 7

A stereotyped class that supports another more central or fundamental class, typically by implementing secondary
logic or control flow. Auxiliary classes are typically used together with focus classes, and are particularly useful for
specifying the secondary business logic or control flow of components during design. See also: focus.
behavior
The observable effects of an operation or event, including its results. It specifies the computation that generates the
effects of the behavioral feature. The description of a behavior can take a number of forms: interaction,
statemachine, activity, or procedure (a set of actions). [UML for SE RFP:The activation/deactivation of one or
more functions. Note: This describes how a system interacts with its environment. Reactive behavior includes the
stimulus and response.]
behavior allocation [UML for SE RFP]
The allocation of functions and/or states to systems, and the allocation of inputs and outputs to system ports.
behavior diagram
A form of diagram that depict behavioral features.
behavioral feature
A dynamic feature of a model element, such as an operation or method.
behavioral model aspect
A model aspect that emphasizes the behavior of the instances in a system, including their methods, collaborations,
and state histories.
binary association
An association between two classes. A special case of an n-ary association.
binding
The creation of a model element from a template by supplying arguments for the parameters of the template.
boolean
An enumeration whose values are true and false.
boolean expression
An expression that evaluates to a boolean value.
call
An action state that invokes an operation on a classifier.
cardinality
The number of elements in a set. Contrast: multiplicity.
category [UML for SE RFP]
A partitioning of elements based on a classification.
central buffer node [From: Superstructure 12.3.9 CentralBufferNode]
An object flow for managing flows from multiple sources and destinations.
child
In a generalization relationship, the specialization of another element, the parent. See: subclass, subtype.
Contrast: parent.
class
A classifier that desctibes of a set of objects that share the same specifications of features, constraints, and
semantics.
classifier
A collection of instances that have something in common. A classifier can have features that characterize its
instances. Classifiers include interfaces, classes, datatypes, and components.
classification
The assignment of an instance to a classifier. See dynamic classification, multiple classification and static
classification.
class diagram
A diagram that shows a collection of declarative (static) model elements, such as classes, types, and their contents
and relationships.
client
A classifier that requests a service from another classifier. Contrast: supplier.
8 SysML Specification v. 0.90 (Draft)

collaboration
The specification of how an operation or classifier, such as a use case, is realized by a set of classifiers and
associations playing specific roles used in a specific way. The collaboration defines an interaction. See: interaction.
collaboration occurrence
A particular use of a collaboration to explain the relationships between the parts of a classifier or the properties of
an operation. It may also be used to indicate how a collaboration represents a classifier or an operation. A
collaboration occurrence indicates a set of roles and connectors that cooperate within the classifier or operation
according to a given collaboration, indicated by the type of the collaboration occurrence. There may be multiple
occurrences of a given collaboration within a classifier or operation, each involving a different set of roles and
connectors. A given role or connector may be involved in multiple occurrences of the same or different
collaborations. See: collaboration.
comment [UML 2 Update]
A textutal annotation that can be attached to a set of elements.
communication diagram
A diagram that focuses on the interaction between lifelines where the architecture of the internal structure and how
this corresponds with the message passing is central. The sequencing of messages is given through a sequence
numberering scheme. Sequence diagrams and communication diagrams express similar information, but show it in
different ways. See: sequence diagram.
compile time
Refers to something that occurs during the compilation of a software module. See: modeling time, run time.
complex number [UML for SE RFP]
A number which includes a real and imaginary part.
component
A modular part of a system that encapsulates its contents and whose manifestation is replaceable within its
environment. A component defines its behavior in terms of provided and required interfaces. As such, a component
serves as a type, whose conformance is defined by these provided and required interfaces (encompassing both
their static as well as dynamic semantics). [UML for SE RFP: A constituent part of an item or system that
contributes to the properties and behaviors of the whole (emergent). Note: A leaf component does not have
constituent parts. See item, system, structured class.]*
component diagram
A diagram that shows the organizations and dependencies among components.
composite
A class that is related to one or more classes by a composition relationship. See: composition.
composite aggregation
Synonym: composition.
composite function [UML for SE RFP]
A function which is decomposed into lower level functions. See function.
composite state
A state that consists of either concurrent (orthogonal) substates or sequential (disjoint) substates. See: substate.
[UML for SE RFP: A state which includes nested states.]
composite structure diagram
A diagram that depicts the internal structure of a classifier, including the interaction points of the classifier to other
parts of the system. It shows the configuration of parts that jointly perform the behavior of the containing classifier.
The architecture diagram specifies a set of instances playing parts (roles), as well as their required relationships
given in a particular context.
composition
A form of aggregation which requires that a part instance be included in at most one composite at a time, and that
the composite object is responsible for the creation and destruction of the parts. Composition may be recursive.
Synonym: composite aggregation.
concrete class
A class that can be directly instantiated. Contrast: abstract class.
SysML Specification v. 0.90 (Draft) 9

concurrency
The occurrence of two or more activities during the same time interval. Concurrency can be achieved by
interleaving or simultaneously executing two or more threads. See: thread.
concurrent substate
A substate that can be held simultaneously with other substates contained in the same composite state. See:
composite state. Contrast: disjoint substate.
condition [UML for SE RFP]
An expression with a discrete output, which is true as long as the expression evaluates true, and is false otherwise.
See guard condition.
connectable element
An abstract metaclass representing model elements which may be linked via connector. See: connector.
connecting component [UML for SE RFP]
A specialized component or system, whose primary function is to connect the outputs from one system to the
inputs of another system via its ports. Note: This may be a wire, network, or mechanical coupler that has
properties and behaviors, which may transform the inputs and outputs. See component.
connection [UML for SE RFP]
Identification of which ports connect to one another. See connector.
connection path [UML for SE RFP]
Multiple connections that may represent a single logical connection.
connector
A link that enables communication between two or more instances. The link may be realized by something as
simple as a pointer or by something as complex as a network connection. [UML for SE RFP: See connection,
connection path, connecting component.]
constraint
A semantic condition or restriction. It can be expressed in natural language text, mathematically formal notation, or
in a machine-readable language for the purpose of declaring some of the semantics of a model element.
container
1. An instance that exists to contain other instances, and that provides operations to access or iterate over its
contents. (for example, arrays, lists, sets).
2. A component that exists to contain other components.
containment hierarchy
A namespace hierarchy consisting of model elements, and the containment relationships that exist between them.
A containment hierarchy forms a graph.
context
A view of a set of related modeling elements for a particular purpose, such as specifying an operation. [UML for
SE RFP: See System context.]
continuous rate [SysML]
A subclass of rate which enables a parameter value to be sampled at an infinite rate. See rate, discrete rate.
continuous time model [UML for SE RFP]
A model which is based on properities that vary continuously with time.
control input [UML for SE RFP]
An input that activates or deactivates a function. See activation, activation/deactivation event.
control node [From: Superstructure 12.3.13 ControlNode]
An activity node used to coordinate the flows between other nodes. It covers initial node, final node, and its
children, fork node join node, decision node, and merge node.[UML for SE RFP: See control operator.]
control operator [UML for SE RFP]
A specialized function that provides logic to transform input events and conditions to discrete values that are
supplied as control inputs to functions. [SysML: A stereotype of an activity that can control execution of other
activities by outputting control values.See control value.] See control node, decision, fork, join, merge.
control value [SysML]
An enumerated value produced by a control operator to control the execution of an activity. See control operator.
10 SysML Specification v. 0.90 (Draft)

data [UML for SE RFP]
A component of information.
data type
A type whose values have no identity (i.e., they are pure values). Data types include primitive built-in types (such
as integer and string) as well as enumeration types.
decomposition [UML for SE RFP]
A description of a whole in terms of its component parts. See aggregation.
decision node [From: Superstructure 12.3.15 DecisionNode]
A control node that choosed between outgoing flows.
delegation
The ability of an object to issue a message to another object in response to a message. Delegation can be used as
an alternative to inheritance. Contrast: inheritance.
dependency
A relationship between two modeling elements, in which a change to one modeling element (the independent
element) will affect the other modeling element (the dependent element).
dependency set [SysML]
A grouping of dependencies that may have a common supplier or client.
deployment [UML for SE RFP]
A dependency relationship between components, where one component depends on the hosting component (i.e
node) for resources in order to r perform its functions. See deployment diagram.*
deployment diagram
A diagram that depicts the execution architecture of systems. It represents system artifacts as nodes, which are
connected through communication paths to create network systems of arbitrary complexity. Nodes are typically
defined in a nested manner, and represent either hardware devices or software execution environments. See:
component diagrams.
derive
A dependency relationship between two requirements in which a client requirement can be generated or inferred
from the supplier requirements or additional design information. Derived requirements may refine or restate a
requirement to improve stakeholder communications or to track design evolution.
design
The phase of the system development process whose primary purpose is to decide how the system will be
implemented. During design strategic and tactical decisions are made to meet the required functional and quality
requirements of a system. [UML for SE RFP: The process of transforming requirements to an implementation.
See requirement.]
design constraint [UML for SE RFP]
A requirement that one or more components of a system must satisfy. Note: This term is sometimes used to refer
to a constraint on the design process versus the system.See requirement.
design time
Refers to something that occurs during a design phase of the system development process. See: modeling time.
Contrast: analysis time.
development process
A set of partially ordered steps performed for a given purpose during system development, such as constructing
models or implementing models.
diagram
A graphical presentation of a collection of model elements, most often rendered as a connected graph of arcs
(relationships) and vertices (other model elements). UML supports the diagrams listed in Appendix A. See diagram
usage. [UML for SE RFP: A graphical representation of a model view. UML for SE RFP supports the diagrams
listed in Appendix A. NEW]
diagram description [SysML]
A comment that provides standardized information about a diagram.See reference data.
diagram interchange [UML for SE RFP]
SysML Specification v. 0.90 (Draft) 11

The ability to exchange notational information on a diagram, including the layout of the diagram.
diagram usage [SysML]
A form of stereotype applied to a diagram to constrain its use. See diagram.
dimension[SysML]
A type of value expressed by a quantity. See quantity, unit.
discrete rate [SysML]
A subclass of rate which enables a parameter value to be sampled at a finite rate. See rate, continuous rate.
discrete time model [UML for SE RFP]
A model which is based on properities that vary discretely with time.
disjoint substate
A substate that cannot be held simultaneously with other substates contained in the same composite state. See:
composite state. Contrast: concurrent substate.
distributed quantity [SysML]
A quantity with an associated probability distribution on its values. See quantity, distribution definition, distribution
result.
distribution definition [SysML]
A parametric constraint that constrains the value of one of its properties to be selected from within a range of
possible values. Synonym probability distribution. See distributed quantity, distribution result.
distribution result [SysML]
A stereotype of property that designates the distributed value defined by a disribution definition. See distributed
quantity, distribution definition.
distribution unit
A set of objects or components that are allocated to a process or a processor as a group. A distribution unit can be
represented by a run-time composite or an aggregate.
domain
An area of knowledge or activity characterized by a set of concepts and terminology understood by practitioners in
that area. [UML for SE RFP] A scope that encompasses a set of entities and relationships that may be addressed
by the model.
dynamic classification
The assignment of an instance from one classifier to another. Contrast: multiple classification, static classification.
effectiveness measure [UML for SE RFP]
A criterion for system optimization that is critcial to the success of the mission. Note: The criterion are often used to
support trade studies to select among alternatives,as well as to optimize a given design.
EIA 632 [UML for SE RFP]
A process standard for Engineering a System.
element
A constituent of a model.
enabling system [UML for SE RFP]
Any system which may support another system throughout its life cycle, and typically includes the development,
production, deployment, support, and disposal systems.
entry action
An action that a method executes when an object enters a state in a state machine regardless of the transition
taken to reach that state.
enumeration
A data type whose instances a list of named values. For example, RGBColor = {red, green, blue}. Boolean is a
predefined enumeration with values from the set {false, true}.
environment [UML for SE RFP]
A collection of systems and items that interact either directly or indirectly with the system of interest.See item,
system.*
event
The specification of a significant occurrence that has a location in time and space and can cause the execution of
12 SysML Specification v. 0.90 (Draft)

an associated behavior. In the context of state diagrams, an event is an occurrence that can trigger a transition.
[UML for SE RFP: A noteworthy occurrence that occurs at the instant of time when a specified expression
evaluates true.]
exception
A special kind of signal, typically used to signal fault situations. The sender of the exception aborts execution and
execution resumes with the receiver of the exception, which may be the sender itself. The receiver of an exception
is determined implicitly by the interaction sequence during execution; it is not explicitly specified.
execution [UML for SE RFP]
The state of the system or model when it is running. For a model, this implies that model computation is occuring.
execution occurrence
A unit of behavior within the lifeline as represented on an interaction diagram.
exit action
An action that a method executes when an object exits a state in a state machine regardless of the transition taken
to exit that state.
export
In the context of packages, to make an element visible outside its enclosing namespace. See: visibility. Contrast:
export [OMA], import.
expression
A string that evaluates to a value of a particular type. For example, the expression “(7 + 5 * 3)” evaluates to a value
of type number.
extend
A relationship from an extension use case to a base use case, specifying how the behavior defined for the
extension use case augments (subject to conditions specified in the extension) the behavior defined for the base
use case. The behavior is inserted at the location defined by the extension point in the base use case. The base
use case does not depend on performing the behavior of the extension use case. See extension point, include.
extension
An aggregation that is used to indicate that the properties of a metaclass are extended through a stereotype, and
that gives the ability to flexibly add and remove stereotypes from classes.
extension point [From: Superstructure 16.3.4 ExtensionPoint]
Identifies a point in the behavior of a use case where that behavior can be extended by the behavior of some other
extending use case as specified by an extend relationship .
facade
A stereotyped package containing only references to model elements owned by another package. It is used to
provide a ‘public view’ of some of the contents of a package.
facility [UML for SE RFP]
A physical infrastructure that supports use of equipment and other resources. See component.
failure [UML for SE RFP]
An inability to satsify a requirement. See requirement.
feature
A property, such as an operation or attribute, that characterizes the instances of a classifier.
final state
A special kind of state signifying that the enclosing
composite state or the entire state machine is completed.
fire
To execute a state transition. See: transition.
focus class
A stereotyped class that defines the core logic or control flow for one or more auxiliary classes that support it.
Focus classes are typically used together with one or more auxiliary classes, and are particularly useful for
specifying the core business logic or control flow of components during design. See also: auxiliary class.
focus of control
A symbol on a sequence diagram that shows the period of time during which an object is performing an action,
SysML Specification v. 0.90 (Draft) 13

either directly or through a subordinate procedure.
fork [UML for SE RFP]
A control operator which enables all of its outputs, when the input is evaluated true.
formal parameter
Synonym: parameter.
framework
A stereotyped package that contains model elements which specify a reusable architecture for all or part of a
system. Frameworks typically include classes, patterns or templates. When frameworks are specialized for an
application domain, they are sometimes referred to as application frameworks. See: pattern.
function [UML for SE RFP]
A transformation of inputs to outputs that may include the creation, monitoring, modification or destruction of
elements, or a null transformation.
function port [UML for SE RFP]
A binding of an input/output to the arguments of a function. See argument, input/output, pin.
function time-line [UML for SE RFP]
A representation of the interval of time that one or more functions and/or states are active and inactive.
functional requirement [UML for SE RFP]
A function a system must perform. See requirement.
generalizable element
A model element that may participate in a generalization relationship. See: generalization.
generalization
A taxonomic relationship between a more general classifier and a more specific classifier. Each instance of the
specific classifier is also an indirect instance of the general classifier. Thus, the specific classifier indirectly has
features of the more general classifier. See: inheritance. [UML for SE RFP: See specialization]
geometric model [UML for SE RFP]
A model of the geometric relationships associated with one or more elements. See spatial representation.
guard condition
A condition that must be satisfied in order to enable an associated transition to fire. [UML for SE RFP: See
condition.]
hardware [UML for SE RFP]
A component of a system that has geometric contstraints. See component.
IDEF0 [UML for SE RFP]
Air Force Standard for process modeling.
implementation
A definition of how something is constructed or computed. For example, a class is an implementation of a type, a
method is an implementation of an operation.
implementation class
A stereotyped class that specifies the implementation of a class in some programming language (e.g., C++,
Smalltalk, Java) in which an instance may not have more than one class. An Implementation class is said to realize
a type if it provides all of the operations defined for the type with the same behavior as specified for the type's
operations. See also: type.
implementation inheritance
The inheritance of the implementation of a more general element. Includes inheritance of the interface. Contrast:
interface inheritance.
import
In the context of packages, a dependency that shows the packages whose classes may be referenced within a
given package (including packages recursively embedded within it). Contrast: export.
include
A relationship from a base use case to an inclusion use case, specifying how the behavior for the base use case
contains the behavior of the inclusion use case. The behavior is included at the location which is defined in the
base use case. The base use case depends on performing the behavior of the inclusion use case, but not on its
14 SysML Specification v. 0.90 (Draft)

structure (i.e., attributes or operations). See extend.
inheritance
The mechanism by which more specific elements incorporate structure and behavior of more general elements.
See generalization.
initial state
A special kind of state signifying the source for a single transition to the default state of the composite state.
input/output [UML for SE RFP]
An item that is subject to a transformation by a function. See argument, function port, parameter, signature.*
instance
An entity that has unique identity, a set of operations that can be applied to it, and state that stores the effects of the
operations. See: object. [UML for SE RFP: A unique model element in a set that its defined by the general features
of its classifier]
integer [UML for SE RFP]
A whole number
interaction
A specification of how stimuli are sent between instances to perform a specific task. The interaction is defined in
the context of a collaboration. See collaboration .[UML for SE RFP: Emergent behavior that results from two or
more dependent behaviors Note: A system or component interacts with other components its environment, to yield
an emergent system behavior from the individual component behaviors.]
interaction diagram
A generic term that applies to several types of diagrams that emphasize object interactions. These include
communication diagrams, sequence diagrams, and the interaction overview diagram.
interaction overview diagram
A disgram that depicts interactions through a variant of
activity diagrams in a way that promotes overview of
the control flow. It focuses on the overview of the flow of control where each node can be an interaction diagram.
interface
A named set of operations that characterize the behavior of an element. [UML for SE RFP: The inputs, outputs,
ports, connections, connecting components (i.e. harness), and associated information that support one or more
interactions between systems. Note: The UML definition of interface also includes the operations that must be
performed in response to the inputs or invocations.]
interface requirement [UML for SE RFP]
An interface a system must support. See requirement.
interface inheritance
The inheritance of the interface of a more general element. Does not include inheritance of the implementation.
Contrast: implementation inheritance.
internal transition
A transition signifying a response to an event without changing the state of an object.
ISO 15288 [UML for SE RFP]
A process standard for system life cycle processes.
issue (technical) [UML for SE RFP]
A potential problem, that requires resolution.
item [UML for SE RFP]
Anything of interest to the modeler, which is uniquely identifiable and can be characterized by a set of properties.
 (previously called element *) [SysML: A classifier that represents the type of thing that flows or the type of thing
that is stored (i.e. stored item). See item flow, item property.]
item flow [SysML]
A subclass of a directed relationship (Note: more precisely a subclass of information flow) that is realized by a
relationship that conveys the item(s). See item, item property.
item property [SysML]
A property that relates the instances of the item to the instances of its enclosing class. See item, item flow,
SysML Specification v. 0.90 (Draft) 15

property.
iteration loop [UML for SE RFP]
A specialized loop where the loop repeats a specified number of times.
join [UML for SE RFP]
A control operator which enables its control output, when all of its inputs are evaluated true
layer
The organization of classifiers or packages at the same level of abstraction. A layer may represent a horizontal
slice through an architecture, whereas a partition represents a vertical slice. Contrast: partition.
leaf function [UML for SE RFP]
A function which is not further decomposed. See function, action.
lifeline
A modeling element that represents an individual participant in an interaction. A lifeline represents only one
interacting entity.
link
A semantic connection among a tuple of objects. An instance of an association. See: association.
link end
An instance of an association end. See: association end.
logical component [SysML]
a component which is specified in terms of functionality, state, and logical characteristics
and are implementation independent. See component, subsystem. Contrast physical component.
manual procedure [UML for SE RFP]
A set of operations that provide instructions for a user to perform. See procedure.
mean [UML for SE RFP]
The expected value associated with a probability distirbution.
merge [UML for SE RFP]
A control operator which enables its output, when any of its inputs are evaluated true
message
A specification of the conveyance of information from one instance to another, with the expectation that activity will
ensue. A message may specify the raising of a signal or the call of an operation. [UML for SE RFP: See control
input, triggering input.]
metaclass
A class whose instances are classes. Metaclasses are typically used to construct metamodels.
meta-metamodel
A model that defines the language for expressing a metamodel. The relationship between a meta-metamodel and
a metamodel is analogous to the relationship between a metamodel and a model.
metamodel
A model that defines the language for expressing a model.
metaobject
A generic term for all metaentities in a metamodeling language. For example, metatypes, metaclasses,
metaattributes, and metaassociations.
method
The implementation of an operation. It specifies the algorithm or procedure associated with an operation.
mission [UML for SE RFP]
The operational context and purpose that the system is intended to support.
model (graphical, visual)
A model represents a view of a physical system. It is an abstraction of the physical system, with a certain purpose.
model aspect
A dimension of modeling that emphasizes particular qualities of the metamodel. For example, the structural model
aspect emphasizes the structural qualities of the metamodel.
model elaboration
The process of generating a repository type from a published model. Includes the generation of interfaces and
16 SysML Specification v. 0.90 (Draft)

implementations which allows repositories to be instantiated and populated based on, and in compliance with, the
model elaborated.
model element
An element that is an abstraction drawn from the system being modeled. Contrast: view element. [UML for SE
RFP: A construct that is used to build a model. See element.]
model interchange [UML for SE RFP]
The ability to exchange model information.
model library
A stereotyped package that contains model elements that are intended to be reused by other packages. A model
library differs from a profile in that a model library does not extend the metamodel using stereotypes and tagged
definitions. A model library is analogous to a class library in some programming languages.
model view [UML for SE RFP]
A specification of the subset of model elements and associated relationships, that are of use to the modeler for a
particular purpose and context. See model. *
modeling time
Refers to something that occurs during a modeling phase of the system development process. It includes analysis
time and design time. Usage note: When discussing object systems, it is often important to distinguish between
modeling-time and run-time concerns. See: analysis time, design time. Contrast: run time.
multiple classification
The assignment of an instance directly to more than one classifier at the same time. See: static classification,
dynamic classification.
multiple inheritance
A semantic variation of generalization in which a type may have more than one supertype. Contrast: single
inheritance.
multiplicity
A specification of the range of allowable cardinalities that a set may assume. Multiplicity specifications may be
given for association ends, parts within composites, repetitions, and other purposes. Essentially a multiplicity is a
(possibly infinite) subset of the non-negative integers. Contrast: cardinality.
n-ary association
An association among three or more classes. Each instance of the association is an n-tuple of values from the
respective classes. Contrast: binary association.
name
A string used to identify a model element.
namespace
A part of the model in which the names may be defined and used. Within a namespace, each name has a unique
meaning. See: name.
natural object [UML for SE RFP]
An item that is not engineered, and may be part of a system or environment.See item.*
need [UML for SE RFP]
A desired requirement of a stakeholder. See requirement.
nested connector end [SysML]
A stereotype of a connector end in which the connected property must be owned directly by an enclosing class or
part, so that the connected property may be identified by a multi-level path of accessible properties from the
classifier that owns the connector.
nested state [UML for SE RFP]
A state which is enabled by its composite state.
no buffer [SysML]
A stereotype of an object node that specifies that arriving tokens are discarded if they are not immediately
consumed.
node
A classifier that represents a run-time computational resource, which generally has at least memory and often
SysML Specification v. 0.90 (Draft) 17

processing capability. Run-time objects and components may reside on nodes. [UML for SE RFP: A component of
a system that provides resources to support execution.]
note
An annotation attached to an element or a collection of elements. A note has no semantics. Contrast: constraint.
notation [UML for SE RFP]
The graphical depiction of a model construct.
object
An instance of a class. See: class, instance.
object diagram
A diagram that encompasses objects and their relationships at a point in time. An object diagram may be
considered a special case of a class diagram or a communication diagram. See: class diagram, communication
diagram.
object flow state
A state in an activity diagram that represents the passing of an object from the output of actions in one state to the
input of actions in another state.
object lifeline
A line in a sequence diagram that represents the existence of an object over a period of time. See: sequence
diagram.
operation
A feature which declares a service that can be performed by instances of the classifier of which they are instances.
[UML for SE RFP: See activity, function.]
operational requirement [UML for SE RFP]
A requirement which is associated with the operation of a system, and typically includes a combination of
functional, interfrace, and performance requirements. See requirement.
optional [SysML]
A stereotype of a parameter with lower multiplicity equal to zero indicating that the parameter is not required for the
activity to begin execution. Otherwise, the lower multiplicity must be greater than zero, which is call “required”.
Synonym non-tiggering input.
overwrite [SysML]
A stereotype of an object node that specifies that the current value replaces the previous value resulting in a queue
of one.
package
A general purpose mechanism for organizing elements into groups. Packages may be nested within other
packages.
package diagram
A diagram that depicts how model elements are organized into packages and the dependencies among them,
including package imports and package extensions.
parameter
An argument of a behavioral feature. A parameter specifies arguments that are passed into or out of an invocation
of a behavioral element like an operation. A parameter’s type restricts what values can be passed. Synonyms:
formal parameter. Contrast: argument.
parametric constraint [SysML]
A stereotype of an assembly used only to constrain the values of properties within a containing assembly. The
parametric constraint can be viewed as a generic constraint, such as F=m*a, that is used in a particular context.
See paramteric relationship.
parametric model [UML for SE RFP]
An analysis model which defines a set of dependent or logically grouped parametric relationships.
parametric relationship [UML for SE RFP]
A dependency between properties, such that a change to the value of one property impacts the value of the other
property. See constraint. See parametric constraint.
parameterized element
18 SysML Specification v. 0.90 (Draft)

The descriptor for a class with one or more unbound parameters. Synonym: template.
parent
In a generalization relationship, the generalization of another element, the child. See: subclass, subtype. Contrast:
child.
part
An element representing a set of instances that are owned by a containing classifier instance or role of a classifier.
(See role.) Parts may be joined by attached connectors and specify configurations of linked instances to be created
within an instance of the containing classifier. (See property)
participate
The connection of a model element to a relationship or to a reified relationship. For example, a class participates in
an association, an actor participates in a use case.
partition
A grouping of any set of model elements based on a set of criteria.
1. activity diagram: A grouping of activity nodes and edges. Partitions divide the nodes and edges to constrain and
show a view of the contained nodes. Partitions can share contents. They often correspond to organizational units in
a business model. They may be used to allocate characteristics or resources among the nodes of an activity.
2. architecture: A set of related classifiers or packages at the same level of abstraction or across layers in a layered
architecture. A partition represents a vertical slice through an architecture, whereas a layer represents a horizontal
slice. Contrast: layer.
pattern
A template collaboration that describes the structure of
a design pattern. UML patterns are more limited than those used by the design pattern community. In general,
design patterns involve many non-structural aspects, such as heuristics for their use and usage trade-offs.
performance property [UML for SE RFP]
A measure of the transformation or response of a function or behavior (i.e response time, etc.).
performance requirement [UML for SE RFP]
A performance property a system must satsify. See requirement.
persistent object
An object that exists after the process or thread that created it has ceased to exist.
physical component [SysML]
a component which includes implementaton constraints. See component, subsystem. Contrast logical component.
physical property [UML for SE RFP]
A physical characteristic of a system or element (i.e. weight, color).
physical requirement [UML for SE RFP]
A physical property a system must satsify. See requirement.
physical system
1. The subject of a model.
2. A collection of connected physical units, which can include software, hardware and people, that are organized to
accomplish a specific purpose. A physical system can be described by one or more models, possibly from different
viewpoints. Contrast: system.
pin
A model element that represents the data values passed into a behavior upon its invocation as well as the data
values returned from a behavior upon completion of its execution. [UML for SE RFP: See function port., input/
output.]
port
A feature of a classifier that specifies a distinct interaction point between that classifier and its environment or
between the (behavior of the) classifier and its internal parts. Ports are connected to other ports through connectors
through which requests can be made to invoke the behavioral features of a classifier. [UML for SE RFP: The part
of a system or component that provides access between a system’s behaviors and properties, and its environment.
Note: this is sometimes referred to as an interaction point.]
postcondition
SysML Specification v. 0.90 (Draft) 19

A constraint expresses a condition that must be true at the completion of an operation.
powertype
A classifier whose instances are also subclasses of another classifier. Power types, then, are metaclasses with an
extra twist: the instances are also subclasses.
precondition
A constraint expresses a condition that must be true when an operation is invoked.
primitive type
A pre-defined data type without any relevant substructure (i.e., is not decomposable) such as an integer or a string.
It may have an algebra and operations defined outside of UML, for example, mathematically.
probability distribution [UML for SE RFP]
A mathematical function which defines the likelihood of a paritcular set of outcomes. See expression.
probe [UML for SE RFP]
A component that monitors the values associated with one or more parameters (i.e. properties).
problem [UML for SE RFP]
A deficiency, limitation, or failure to satisfy a requirement or need, or other undesired outcome. Note: A problem
may be associated with the behavior, structure, and/or properties of a system or element at any level of the
hierarchy (i.e. system of system level, down to a component/part level). See need, requirement.
problem cause [UML for SE RFP]
The relationship between a problem and its source problems (i.e. cause). Note: This cause effect relationship is
often represented in fishbone diagrams, fault trees, etc..*
procedure
A set of actions that may be attached as a unit to other parts of a model, for example, as the body of a method.
Conceptually a procedure, when executed, takes a set of values as arguments and produces a set of values as
results, as specified by the parameters of the procedure.
process
1. A heavyweight unit of concurrency and execution in an operating system. Contrast: thread, which includes
heavyweight and lightweight processes. If necessary, an implementation distinction can be made using
stereotypes.
2. A software development process—the steps and guidelines by which to develop a system.
3. To execute an algorithm or otherwise handle something dynamically. [UML for SE RFP: A set of inter-related
functions and their corresponding inputs and outputs, which are activated and deactivated by their control inputs.]
profile
A stereotyped package that contains model elements that have been customized for a specific domain or purpose
using extension mechanisms, such as stereotypes, tagged definitions and constraints. A profile may also specify
model libraries on which it depends and the metamodel subset that it extends.
projection
A mapping from a set to a subset of it.
property
A named value denoting a characteristic of an element. A property has semantic impact. Certain properties are
predefined in the UML; others may be user defined. See: tagged value. [SysML] A usage of a class that relates the
instances of the enclosing class to the instances of the class that types the property.[UML for SE RFP: A
quantifiable characteristic. See value.]
property association [UML for SE RFP]
The assignment of a property to a model element or set of model elements.
property attribute [UML for SE RFP]
Unique state of a property.
pseudo-state
A vertex in a state machine that has the form of a state, but doesn’t behave as a state. Pseudo-states include initial
and history vertices.
qualifier
An association attribute or tuple of attributes whose values partition the set of objects related to an object across an
20 SysML Specification v. 0.90 (Draft)

association.
quantity[SysML]
A stereotype of a data that specifies a value with a dimensions and/or unit of measure. See dimension, unit,
distributed quantity.
rate [SysML]
A stereotype of parameter that specifies how often objects and values can traverse an activity edge. See discrete
rate, continuous rate.
rationale [SysML]
An element that documents the principles or reasons for a modeling decision, such as an analysis choice or a
design selection. It provides or references the basis for the modeling decision, and can be attached to any model
element.
real number [UML for SE RFP]
A number which can have any value from negative infinity to infinity.
realization
A specialized abstraction relationship between two sets of model elements, one representing a specification (the
supplier) and the other representing an implementation of the latter (the client). Realization can be used to model
stepwise refinement, optimizations, transformations, templates, model synthesis, framework composition, etc.
receive [a message]
The handling of a stimulus passed from a sender instance. See: sender, receiver.
receiver
The object handling a stimulus passed from a sender object. Contrast: sender.
reception
A declaration that a classifier is prepared to react to the receipt of a signal.
reference
1. A denotation of a model element.
2. A named slot within a classifier that facilitates navigation to other classifiers. Synonym: pointer.
refinement
A relationship that represents a fuller specification of something that has already been specified at a certain level of
detail. For example, a design class is a refinement of an analysis class.
relationship
An abstract concept that specifies some kind of connection between elements. Examples of relationships include
associations and generalizations.
replicate function [UML for SE RFP]
A function which represents the same transformation, but is implemented by separate resources. See function.
repository
A facility for storing object models, interfaces, and implementations.
requirement
A statement of a capability or condition that a system must satisfy. A requirement may specify a function that a
system must perform or a performance condition that a system must satisfy.
requirement allocation [UML for SE RFP]
The assignment of a requirement to an element, component, or system. See allocation, requirement, requirement
satisfaction, trace.
requirement attribute [UML for SE RFP]
An attribute fo a requirement, which may include its criticality or weighting, level of uncertainty, verification status,
etc. See requirement.
requirement traceability [UML for SE RFP]
The relationship between a source requirement and the derived requirements needed to satisfy the source
requirement. See requirement, derive, trace.
requirement type [UML for SE RFP]
A category of requirement. Note: This includes functional, interface, performance, etc.
requirement verification [UML for SE RFP]
SysML Specification v. 0.90 (Draft) 21

A comparison between a requirement and the verification results that is intended to satisfy the requirement. See
verify, verdict, verification result.
resource [UML for SE RFP]
Any element that is needed for the execution of a function. See resource constraint.
resource constraint [SysML]
A stereotype of a constraint that specifies the types of resources used by the model element it constrains. See
resource.
responsibility
A contract or obligation of a classifier.
reuse
The use of a pre-existing artifact.
role
The named set of features defined over a collection of entities participating in a particlar context.
Collaboration: The named set of behaviors possessed by a class or part participating in a particular context.
Part: a subset of a particular class which exhibits a subset of features possessed by the class
Associations: A synonym for association end often referring to a subset of classifier instances that are participating
in the association. [UML for SE RFP: See part, system role.]
run time
The period of time during which a computer program or a systemexecutes. Contrast: modeling time.
satisfy [SysML]
A dependency relationship between a requirement and a model element that fulfills the requirement. See: derive,
verify.
scalable [UML for SE RFP]
A measure of the extent to which the modeling langauge (or methodology, etc), can be adapted to an increase in
scope and/or complexity.
scenario
A specific sequence of actions that illustrates behaviors. A scenario may be used to illustrate an interaction or the
execution of a use case instance. See: interaction.
selection [UML for SE RFP]
A control operator which represents a test that enables an output based on the values/conditions of the input.
semantic variation point
A point of variation in the semantics of a metamodel. It provides an intentional degree of freedom for the
interpretation of the metamodel semantics.
semantics [UML for SE RFP]
The meaning of a model element. Note: a precise meaning should be able to be expressed mathematically.
send [a message]
The passing of a stimulus from a sender instance to a receiver instance. See: sender, receiver.
sender
The object passing a stimulus to a receiver instance. Contrast: receiver.
sequence diagram
A diagram that depicts an interaction by focusing on the sequence of messages that are exchanged, along with
their corresponding event occurrences on the lifelines.
Unlike a communication diagram, a sequence diagram includes time sequences but does not include object
relationships. A sequence diagram can exist in a generic form (describes all possible scenarios) and in an instance
form (describes one actual scenario). Sequence diagrams and communication diagrams express similar
information, but show it in different ways. See: communication diagram.
sequential state [UML for SE RFP]
A state which can only be active when the other sequential states are not active. See state, concurrent substate.
signal
The specification of an asynchronous stimulus that triggers a reaction in the receiver in an asynchronous way and
without a reply. The receiving object handles the signal as specified by its receptions. The data carried by a send
22 SysML Specification v. 0.90 (Draft)

request and passed to it by the occurrence of the send invocation event that caused the request is represented as
attributes of the signal instance. A signal is defined independently of the classifiers handling the signal.
signature
The name and parameters of a behavioral feature. A signature may include an optional returned parameter. [UML
for SE RFP: See input/output.
simple state [UML for SE RFP]
A state that does not have nested states.See state, composite state.
single inheritance
A semantic variation of generalization in which a type may have only one supertype. Synonym: multiple inheritance
[OMA]. Contrast: multiple inheritance.
slot
A specification that an entity modeled by an instance specification has a value or values for a specific structural
feature.
software [UML for SE RFP]
A component of a system that specifies instructions which are executed by a computer. See component.
software module
A unit of software storage and manipulation. Software modules include source code modules, binary code
modules, and executable code modules.
source requirement [UML for SE RFP]
The requirement which is the basis for deriving one or more other requirements.
spatial representation [UML for SE RFP]
A geometrical relationship among elements. See geometric model.
specialization [UML for SE RFP]
A classification of an entity (e.g., element, system, function, requirement, ...), which specifies the common features
of the more general element, and unique features of the specific element. See generalization.
specialized requirement [UML for SE RFP]
A requirement that is not explicitly addressed by the default requirement types. Note: This may include safety,
reliabillity, maittianability, producibility, usability, security, etc.
specialty engineering [UML for SE RFP]
A general term for engineering disciplines associated with some specific aspects of a system, suchas reliability or
safety engineering.
specification
A set of requirements for a system or other classifier. Contrast: implementation. [UML for SE RFP: One or more
requirements for a system, component or item.]
stakeholder [UML for SE RFP]
Individuals, groups, and/or institutions which may be impacted by the system throughout its life cycle, including
acquisition, development, production, deployment, operations, support, and disposal.
state
A condition or situation during the life of an object during which it satisfies some condition, performs some activity,
or waits for some event. Contrast: state [OMA]. [UML for SE RFP: A condition of a system or element, as defined
by some of its properties, which can enable system behaviors and/or structure to occur. Note: The enabled
behavior may include no actions, such as associated with a wait state. Also, the condition that defines the state
may be dependent on one or more previous states.]
state-based behavior [UML for SE RFP]
Behavior which is described by states and transitions between states.
state machine diagram
A diagram that depicts discrete behavior modeled through finite state-transition systems. In particular, it specifies
the sequences of states that an object or an interaction goes through during its life in response to events, together
with its responses and actions. See: state machine.
state machine
A behavior that specifies the sequences of states that an object or an interaction goes through during its life in
SysML Specification v. 0.90 (Draft) 23

response to events, together with its responses and actions.
static classification
The assignment of an instance to a classifier where the assignment may not change to any other classifier.
Contrast: dynamic classification.
stereotype
A class that defines how an existing metaclass (or stereotype) may be extended, and enables the use of platform
or domain specific terminology or notation in addition to the ones used for the extended metaclass.
Certain stereotypes are predefined in the UML, others may be user defined. Stereotypes are one of the
extensibility mechanisms in UML. See: constraint, tagged value.
stimulus
The passing of information from one instance to another, such as raising a signal or invoking an operation. The
receipt of a signal is normally considered an event. See: message.
storage device [UML for SE RFP]
A component of a system that is used to store a stored item. Note: this may include memory device, a battery, or a
tank. See component, stored item. *
store requirement [UML for SE RFP]
A stored item a system must store. See requirement, stored item. *
stored item [UML for SE RFP]
An item that persists over time, which may be depletable or non-depletable. Note: Non-depletable stores may
include data store in computer memory, and depletable stores may include energy in a battery, or fluid in a tank..
Physical stores obey the conservation laws (only take out what is put in). A non-depletable store, such as a data
store, is not constrained by the conservation laws. The stored item should be differentiated from the storage
device, which stores the item. See central buffer node, storage device. Note: This was previously a system store. *
streaming [UML 2 UPDATE]
A property of a parameter that specifies whether its values can be accepted or produced by an action while
executing. A non-streaming parameter specifies that the parameter value can only be accepted at the beginning of
execution and produced at the end of execution.
string
A sequence of text characters. The details of string representation depend on implementation, and may include
character sets that support international characters and graphics.
structure [UML for SE RFP]
The relationships between the components that contribute to the properties of the whole, and enable them to
interact (inter-relate).
structural feature
A static feature of a model element, such as an attribute.
structural model aspect
A model aspect that emphasizes the structure of the objects in a system, including their types, classes,
relationships, attributes, and operations.
structure diagram
A form of diagram that depicts the elements in a specification that are irrespective of time. Class diagrams and
component diagrams are examples of structure diagrams.
structured class [UML 2 UPDATE]
A class that can be decomposed into its parts.
subactivity state
A state in an activity diagram that represents the execution of a non-atomic sequence of steps that has some
duration.
subclass
In a generalization relationship, the specialization of another class, the superclass. See: generalization. Contrast:
superclass.
submachine state
A state in a state machine that is equivalent to a
24 SysML Specification v. 0.90 (Draft)

composite state but whose contents are described by another state machine.
substate
A state that is part of a composite state. See: concurrent state, disjoint state.
subpackage
A package that is contained in another package.
subsystem
A unit of hierarchical decomposition for large systems. A subsystem is commonly instantiated indirectly. Definitions
of subsystems vary widely among domains and methods, and it is expected that domain and method profiles will
specialize this construct. A subsystem may be defined to have specification and realization elements. [UML for SE
RFP:
A logical or physical partitioning of a system. See system, logical component, physical component.]
subtype
In a generalization relationship, the specialization of another type, the supertype. See: generalization. Contrast:
supertype.
superclass
In a generalization relationship, the generalization of another class, the subclass. See: generalization. Contrast:
subclass.
supertype
In a generalization relationship, the generalization of another type, the subtype. See: generalization. Contrast:
subtype.
supplier
A classifier that provides services that can be invoked by others. Contrast: client.
synch state
A vertex in a state machine used for synchronizing the
concurrent regions of a state machine.
system
An organized array of elements functioning as a unit Also, a top-level subsystem in a model. [UML for SE RFP:
An item, with structure, that exhibits observable properties and behaviors. See item, component, structured class.
*]
system (component) boundary [UML for SE RFP]
The set of all ports, which connect the system (component) to its environment.
system context [UML for SE RFP]
A depiction of the inputs and outputs between a system and its environment. See context.
system hierarchy [UML for SE RFP]
A decomposition of a system and its components.
system interconnection [UML for SE RFP]
The connection between systems and between components. See connector.
system role [UML for SE RFP]
A subset of its behaviors, properties, and structure. Note: The subset may be associated with specific interactions.
ation laws. See role.
tagged value
The explicit definition of a property as a name-value pair. In a tagged value, the name is referred as the tag. Certain
tags are predefined in the UML; others may be user defined. Tagged values are one of three extensibility
mechanisms in UML. See: constraint, stereotype.
template
Synonym: parameterized element.
test case
A process or activity that is used to determine whether a system has fulfilled its requirements. See requirement,
satisfy.
test scenario [UML for SE RFP]
A scenario which replicates the behavior of the environment that interacts with the system under test.
SysML Specification v. 0.90 (Draft) 25

text-based requirement [UML for SE RFP]
One or more requirements specified in text. See requirement.
thread [of control]
A single path of execution through a program, a dynamic model, or some other representation of control flow. Also,
a stereotype for the implementation of an active object as lightweight process. See process. [UML for SE RFP: A
process with no concurrent functions, and represents a single path of execution.]
time event
An event that denotes the time elapsed since the current state was entered. See: event.
time expression
An expression that resolves to an absolute or relative value of time.
time property [UML for SE RFP]
A property of the model that represents a local or global time, which other properties may depend on. . Note: The
property can support continuous or discrete-time models. This variable should not be confused with the measured
or computed time that an actual system uses, which depends on a number of implementation specific factors
related to clocks, synchronization, etc. See property.
time reference [SysML]
The time property from which other time properties are derived. See time property.
timing diagram
An interaction diagram that shows the change in state or condition of a lifeline (representing a Classifier Instance or
Classifier Role) over linear time. The most common usage is to show the change in state of an object over time in
response to accepted events or stimuli.
top level
A stereotype denoting the top-most package in a containment hierarchy. The topLevel stereotype defines the outer
limit for looking up names, as namespaces “see” outwards. For example, opLevel subsystem represents the top of
the subsystem containment hierarchy.
topology [UML for SE RFP]
A graph of nodes and arcs.
trace
A dependency that indicates a historical or process relationship between two elements that represent the same
concept without specific rules for deriving one from the other. Trace dependencies are used to track requirements
and changes across models.
trade-off study [UML for SE RFP]
An evaluation of alternatives based on a set of evaluation criteria.
transient object
An object that exists only during the execution of the process or thread that created it.
transition
A relationship between two states indicating that an object in the first state will perform certain specified actions
and enter the second state when a specified event occurs and specified conditions are satisfied. On such a change
of state, the transition is said to fire. [UML for SE RFP: Response to events/conditions, which triggers a behavior.]
triggering input [UML for SE RFP]
An input which is required for a function to be activated.
type
A stereotyped class that specifies a domain of objects together with the operations applicable to the objects,
without defining the physical implementation of those objects. A type may not contain any methods, maintain its
own thread of control, or be nested. However, it may have attributes and associations. Although an object may
have at most one implementation class, it may conform to multiple different types. See also: implementation class
Contrast: interface.
type expression
An expression that evaluates to a reference to one or more types.
uninterpreted
A placeholder for a type or types whose implementation is not specified by the UML. Every uninterpreted value has
26 SysML Specification v. 0.90 (Draft)

a corresponding string representation. See: any [CORBA].
unit [SysML]
A standard for expressing a quantity. See dimension, quantity.
usage
A dependency in which one element (the client) requires the presence of another element (the supplier) for its
correct functioning or implementation.
user [UML for SE RFP]
An individual or group of individuals that use a system. See actor.
use case
The specification of a sequence of actions, including variants, that a system (or other entity) can perform,
interacting with actors of the system. See: use case instances.
use case diagram
A diagram that shows the relationships among actors and the subject (system), and use cases.
use case instance
The performance of a sequence of actions being specified in a use case. An instance of a use case. See: use case
class.
use case model
A model that describes a system’s functional requirements in terms of use cases.
utility
A stereotype that groups global variables and procedures in the form of a class declaration. The utility attributes
and operations become global variables and global procedures, respectively. A utility is not a fundamental
modeling construct, but a programming convenience.
validation [UML for SE RFP]
The process for demonstrating that a system or its requirements satisfy the stakeholder needs.
value
An element of a type domain.[SysML: See quantity.]
value binding constraint [SysML]
A sterotype of a connector that declares that two connected properties are constrained to have the same value.
variance [UML for SE RFP]
A measure of the distribution about the mean of a probability distribution. Refer to the mathematical definition
associated with a probability distribution.
vector [UML for SE RFP]
A data type, which specifies a magnitude and direction.
verdict [SysML]
The outcome of executing one or more test cases or verification procedures. See test case, verification procedure,
verification result, verify. Note: This term is borrowed from the testing profile.
verification [UML for SE RFP]
The process for demonstrating a system satisfies its requirements.
verification procedure [UML for SE RFP]
The functions needed to support execution of a test case. Note. This may include generating an input stimulus and
monitoring an output response. See procedure, manual procedure.
verification result [UML for SE RFP]
The outcome of executing one or more test cases.* See verdict.
verification system [UML for SE RFP]
The system that implements the verification procedures.
verify
A relationship between a requirement and a test case that can determine whether a system fulfills the requirement.
See requirement, test case, verdict.
vertex
A source or a target for a transition in a state machine. A vertex can be either a state or a pseudo-state. See: state,
pseudo-state.
SysML Specification v. 0.90 (Draft) 27

view
See model.
visibility
An enumeration whose value (public, protected, or private) denotes how the model element to which it refers may
be seen outside its enclosing namespace.
well-formedness rule [UML for SE RFP]
A rule which specifies the allowable relationships and constraints among model elements.

5 Symbols

Editorial Comment: This section, which is currently not used, will likely be removed in a future revison.

6 Additional information

6.1 Relationships to Other Standards
SysML is defined as an extension of the OMG UML 2.0 Superstructure Specification (OMG document number ptc/2004-10-
02). If SysML requires any changes to this UML specification, they will be described in a future version of this document.

SysML is also being aligned with two evolving interoperability standards: the ISO AP-233 data interchange standard for
systems engineering tools and the OMG XMI 2.0 model interchange standard for UML 2.0 modeling tools. While the details
of this alignment are beyond the scope of this specification, overviews of alignment issues and relevant references are fur-
nished in Appendix F and Appendix G.

SysML supports the OMG’s Model Driven Architecture initiative by its reuse of the UML standard, and its architec-
tural alignment with the OMG XMI 2.0 and ISO AP-233 interoperability standards.

6.2 How to Read this Specification
This specification is intended to be read by systems engineers so that they may learn and apply SysML, and by modeling tool
vendors so that they may implement and support SysML. As background all readers are encouraged to first read Part I “Intro-
duction”.

After reading the introduction, readers should be prepared to explore the user-level constructs defined in the next three
parts: Part II - “Structure”, Part III - “Behavior”, and Part IV - “Cross Cutting”. Systems engineers should read the Overview,
Diagram Elements and Usage Examples sections in each chapter, and explore the Package Structure, UML Extension and
Compliance level sections as they see fit. Modeling tool vendors should read all sections. In addition, Systems engineers who
want to understand how to apply the language and assess its coverage should read the Appendix B - “Sample Problem” and
Appendix E - “Requirements Traceability” respectively.

Although the chapters are organized into logical groupings that can be read sequentially, this is a reference specification
and is intended to be read in a non-sequential manner.

6.3 Acknowledgements
The following companies submitted or supported parts of this specification:

• Industry
28 SysML Specification v. 0.90 (Draft)

• BAE SYSTEMS

• Boeing

• Deere & Company

• EADS Astrium

• EmbeddedPlus Engineering

• Eurostep

• Israel Aircraft Industries

• Lockheed Martin Corporation

• Motorola

• Northrop Grumman

• oose.de Dienstleistungen für innovative Informatik GmbH

• PivotPoint Technology

• Raytheon

• THALES

• Government

• NASA/Jet Propulsion Laboratory

• National Institute of Standards and Technology (NIST)

• DoD/Office of the Secretary of Defense (OSD)

• Vendors

• ARTISAN Software Tools

• Ceira Technologies

• Gentleware

• IBM

• I-Logix

• Mentor Graphics

• Popkin Software

• Telelogic

• Structured Software Systems Limited

• Vitech

• Liaisons

• Consultative Committee for Space Data Systems (CCSDS)

• Embedded Architecture and Software Technologies (EAST)

• International Council on Systems Engineering (INCOSE)

• ISO STEP AP-233

• Systems Level Design Language (SLDL) and Rosetta
SysML Specification v. 0.90 (Draft) 29

The following persons were members of the core team that designed and wrote this specification: Vincent Arnould, Laurent
Balmelli, Ian Bailey, James Baker, Conrad Bock, Carolyn Boettcher, Roger Burkhart, Murray Cantor, Bruce Douglass, Harald
Eisenmann, Marilyn Escue, Sanford Friedenthal, Eran Gery, Drora Goshen, Hal Hamilton, Dwayne Hardy, James Hummel,
Cris Kobryn, Michael Latta, Robert Long, Alan Moore, Veronique Normand, Salah Obeid, David Price, Joseph Skipper, Rick
Steiner, Robert Thompson, Jim U’Ren, Tim Weilkiens, and Brian Willard.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Perry Alexander, Mike Dickerson, Orazio Gurrieri, Julian Johnson, Jim Long, Henrik Lönn, Dave
Oliver, Jim Schier, Matthias Weber, Bran Selic, Peter Shames and Thomas Weigert.
30 SysML Specification v. 0.90 (Draft)

7 Language Architecture

The SysML specification is defined using a profiling and metamodeling approach that adapts formal specification tech-
niques. While this approach lacks some of the rigor of a formal specification method, it offers the advantages of being more
intutitive and pragmatic for most implementors and practitioners.1 This chapter explains design principles and how they are
applied to define the SysML language architecture.

7.1 Design Principles
The fundamental design principles for SysML are to provide:

• Parsimony. SysML is based on a subset of UML that economically satisfies the basic requirements of the systems engi-
neering community as defined in the UML for SE RFP. Additional constructs and diagram types are added to this UML subset
as necessary to address other SE requirements. This surgical reduction and augmentation of UML constructs is intended to
make SysML easier to learn, implement and apply.

• Reuse. SysML strictly reuses UML wherever practical, and when modifications are required, they are done in a manner
that strives to minimize changes to the underlying language. Consequently, SysML is intended to be relatively easy to imple-
ment for vendors who support UML 2 or later versions.

• Modularity. This principle of strong cohesion and loose coupling is applied to group constructs into packages and orga-
nize features into metaclasses, stereotypes and model library classes.

• Layering. Layering is applied in two ways to the SysML metamodel. First, SysML packages are specified as an extension
layer to the UML metamodel. Second, a 4-layer metamodel architectural pattern is consistently applied to separate concerns
(especially regarding instantiation) across layers of abstraction.

• Partitioning. Partitioning is used to organize conceptual areas within the same layer. In general, SysML partitioning
strives to be consistent with the UML package partitioning to facilitate reuse and implementation.

• Extensibility. SysML furnishes the same extension mechanisms furnished by UML (metaclasses, stereotypes, model
libraries), so that the language can be further extended for specific systems engineering domains, such as automotive, aero-
space, manufacturing and communications.

• Interoperability. SysML is aligned with the semantics of the ISO AP-233 data interchange standard to support interopera-
bility among engineering tools, and inherits the XMI interchange from UML.

7.2 Architecture
The SysML langauge reuses and extends many of the packages from UML, as is shown in Figure 7-1. Several extensions
mechanisms are used including stereotypes, metaclasses and model libraries. The SysML user model is created by instantiat-
ing the stereotypes and metaclasses specified in the SysML metamodel and subclassing the classes in the SysML model
library.

In order to understand the SysML package structure, it is helpful to understand the UML Superstructure package structure
which it extends. UML 2 Superstructure package structure is shown in Figure 7-2. Each package contains metaclasses that
define the basic language constructs. The dependencies between the packages are shown as dashed arrows. The metaclasses
and their interrelationships in a package are specified in the UML Specification as one or more class diagrams to specify the

1. The specification of SysML as a metamodel does not preclude it from being later specified via a mathematically
formal language (e.g., VDM, Object-Z).
SysML Specification v. 0.90 (Draft) 31

abstract syntax along with the class descriptions, constraints, and concrete syntax (notations). Collectively all the packages
along with their class diagrams, class descriptions, and constraints are referred to as the UML metamodel.

The UML metamodel defines packages for structural, behavioral and auxiliary constructs, as well as profile constructs for cus-
tomizing the language. The packages for structure include Classes, Composite Structures, Components, and Deployments. The
packages for behavior includes Actions, Activities, Interactions, State Machines and Use Cases, as well as a Common Behav-
ior package. The UML package structure corresponds closely with the UML major diagram types.

As previously stated, the design approach for SysML is to reuse a subset of UML and create extensions to support the specific
requirements needed to satisfy the requirements in the UML for SE RFP. As shown in Figure 7-3, the SysML package struc-
ture is largely aligned with the UML package structure. Some UML packages are not being reused, since they are not consid-
ered essential for systems engineering applications to meet the requirements of the RFP. State machines, interactions, and use
cases are included in SysML without modification. Some new extensions have been added to SysML packages for activities,
classes, and auxiliary. The assemblies package reuses structured classes from composite structures and adds some minor
extensions. New SysML packages have been added to support new constructs for Requirements, Parametrics, and Allocation.

It should be noted that the chapters in this specification align closely with the SysML package structure. The common behav-
ior package and the profiles package are imported into SysML, but there is no corresponding chapter for these packages. The
details of which UML packages are imported into SysML can be found in the package structure section of each chapter and is
summarized in the compliance section.

Editorial Comment: Details regarding the SysML package structure and compliance are still being sorted out.

Figure 7-1. SysML Extension of UML

< < u s e rM o d e l> >
X Y Z s ys te m

< < m e ta m o d e l> >
S y s M L

< < m e ta m o d e l> >
U M L

< < m o d e lL ib ra ry > >
S y s M L

< < re use> >

< < ins ta nceO f> >

< < ins ta nceO f> > < < in s tan ce O f> >

< < m e ta m o d e l> >
M O F

< < im po rt> >
32 SysML Specification v. 0.90 (Draft)

.

Figure 7-2. UML Superstructure Package Structure

UseCases

Actions

Activities AuxiliaryConstructs

ClassesCommonBehaviors

Components

CompositeStructures

Deployments

Interactions

Profiles

StateMachines
SysML Specification v. 0.90 (Draft) 33

7.3 Extension Mechanisms

Editorial Comment: Further information about how SysML extends UML, and how systems engineers can extend/
customize SysML will be provided in a future revision.

This specification uses two primary extension mechanisms to define SysML:

• UML stereotypes

• UML diagram extensions

SysML stereotypes define new modeling constructs by customizing existing UML 2.0 constructs with new properties and
constraints. SysML diagram extensions define new diagram notations that supplement diagram notations reused from UML
2.0.

In addition, Chapter 19: Profiles and Appendix D: Model Libraries show examples how systems engineers can further
customize SysML using stereotypes and model libraries, respectively.

Figure 7-3. SysML Package Structure

<<metamodel>>
SysML

UseCases

Activities

Actions StateMachines

Interactions Assemblies

Classes

Profiles

Auxillary
Constructs

RequirementsParametrics

Common
Behaviors

Allocation
34 SysML Specification v. 0.90 (Draft)

7.4 4-Layer Metamodel Architecture
Like UML 2.0 on which it is based, the SysML language architecture conforms to a 4-layer metmodel architecture pattern,
where the SysML metamodel reuses much of the UML metamodel, and both the SysML and the UML metamodel may be con-
sidered instances of the Meta Object Facility meta-metamodel.

7.5 AP-233 Alignment
One of the design principles is to align SysML with the ISO AP-233 standard to facilitate the interoperability between SysML
tools and other engineering tools. The alignment approach is described in Appendix F.
SysML Specification v. 0.90 (Draft) 35

36 SysML Specification v. 0.90 (Draft)

8 Language Formalism

The SysML specification is defined by using a variation of the approach that adapts formal specification techniques. The
fomal specification techniques are used to increase the precision and correctness of the specification. This chapter explains the
specification techniques used to define SysML.

The following are the goals of the specifications techniques used to define SysML:

• Correctness.

• Precision.

• Conciseness.

• Consistency.

• Understandability.

The specification technique used in this specification describes SysML as a UML extension that is defined using stereo-
types and metaclasses.

8.1 Levels of Formalism
 SysML is defined using a combination of profiling and metamodeling techniques that use precise natural language

(English) to specify contraints and semantics. In general, the syntax of the language is specified precisely so that SysML will
support tool interoperability via ISO AP-233 and XMI model interchange formats.

SysML’s detailed semantics are described using natural language, striking a difficult balance between formal rigor and
understandability. As executable SysML modeling tools become more mainstream, it is also likely that more formal tech-
niques will be applied to improve the precsion of both SysML and UML semantics.

8.2 Chapter Specification Structure
This section provides information about how the top-level SysML packages are defined in each chapter. Each chapter has one
or more of the following sections:

Overview

This section provides an overview of the SysML modeling constructs defined in the subject package, which are usually associ-
ated with one or more SysML diagram types.

Diagram elements

This section provides tables that summarize the concrete syntax (notation) and abstract syntax references for the graphic nodes
and paths associated with the relevant diagram types.

Package structure

This section specifies the package dependencies for the SysML packages that are defined in the chapter.

UML extensions

This section specifies how the SysML modeling constructs are defined using both UML stererotypes and diagram extensions.
SysML Specification v. 0.90 (Draft) 37

Compliance levels

This section elaborates compliance requirements for the SysML modeling constructs as needed.

Usage examples

This section shows how the SysML modeling constructs can be applied to solve pragmatic systems engineering problems.

8.3 Constraints
SysML constraints are expressed using precise natural language (English).

8.4 Use of Natural Language
SysML uses natural language (English) for much of the specification, including the specification of constraints, and providing
general descriptive text for classes, attributes, and associations.

8.5 Conventions and Typography
In the description of SysML, the following conventions have been used:

• While referring to stereoptypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as they
appear in the model are always used.

• No visibilities are presented in the diagrams, since all elements are public.

• If a mandatory section does not apply for a stereotype or metaclass, use the text: ‘No additional XXX’, where ‘XXX’ is
the name of the heading. If an optional section is not applicable, it is not included.

• Stereotype, metaclass and metassociation names: initial embedded capitals are used (e.g., ‘ModelElement’, ‘ElementRef-
erence’).

• Boolean metaattribute names: always start with ‘is’ (e.g., ‘isComposite’).

• Enumeration types: always end with “Kind” (e.g., ‘DependencyKind’).
38 SysML Specification v. 0.90 (Draft)

Part II - Structural Constructs
This Part defines the static, structural constructs used in SysML structure diagrams, including the Class diagram, Assembly
diagram, and Parametric diagram. The function and contents of these packages are specified in the following chapters, one for
each of these three SysML diagram types.
UML Infrastructure 2.0 Draft Adopted Specification 39

40 SysML Specification v. 0.90 (Draft)

9 Classes

9.1 Overview
Class diagrams define classes and relationships between them. Classes describe items of interest using features that include
attributes and operations. Class relationships include associations, generalization, and dependencies. Associations have associ-
ation ends that are used to specify multiplicity, navigability, ordering, and other features. Classes can be instantiated by
uniquely identifying an object and creating the features and relationships of the class which describe it.

The class diagram can be used to represent many different aspects of a system. One example is to depict the conceptual
elements that capture an operational concept. Another example is to represent an abstraction of the system and its components.
Yet another is to specify an entity relationship diagram that describes relationships among the data in a system.

The following additions to UML are included in this chapter:
• A dependency set has been added to group dependency relationships.
• A root notation has been added to depict multiple levels of specialization.
SysML Specification v. 0.90 (Draft) 41

9.2 Diagram elements

Table 3. Graphical nodes included in class diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Class UML::Kernel::Class Basic

InstanceSpecification UML::Kernel::InstanceSpecifi-
cation

Basic

Package UML::Kernel::Package Basic

Comment UML::Kernel::Comment Basic

Root notation Diagram extension Advanced

ClassName

Instancename :
ClassName

PackageName

A comment.

annotated element

{A,B}
C

{A,B}
object:C
42 SysML Specification v. 0.90 (Draft)

Table 4. Graphical paths included in class diagrams.

PATH NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

DependencySet SysML::Classes::Dependency-
Set

Advanced

Association UML::Kernel::Association Basic

Composition UML::Kernel::Property with
aggregation equal composite

Basic

Aggregation UML::Kernel::Property with
aggregation equal shared

Basic

Dependency UML::Kernel::Dependency Basic

Generalization UML::Kernel::Generalization Basic

Realization UML::Kernel::Realization Basic

Public Package
Import

UML::Kernel::PackageImport Basic

Private Package
Import

UML::Kernel::PackageImport Basic

Rqt A

Rqt B Rqt C

dependency set

<<import>>

<<access>>
SysML Specification v. 0.90 (Draft) 43

GeneralizationSet UML::Kernel::Generalization-
Set

Advanced

Containment UML::Kernel::Package Basic

Containment UML::Kernel::Class Basic

Table 4. Graphical paths included in class diagrams.

PATH NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Class

Class Class

{generalization set constraint}

Package

Package Package

Class A

Class B Class C
44 SysML Specification v. 0.90 (Draft)

9.3 Package structure

9.4 UML extensions

9.4.1 Stereotypes

Abstract Syntax

Package DependencySets

Figure 9-2. Stereotypes defined in package DependencySets.

9.4.1.1 DependencySet

Description

A grouping of dependencies that may have a common supplier or client, which can be used for many different purposes.

Constraints

[1] The elements within the stereotyped package must be of kind UML::Dependency.

Figure 9-1. Package structure for SysML classes.

SysML::Classes

UML::Kernel

«import»

«metaclass»
UML::Kernel::Package

«stereotype»
DependencySet
SysML Specification v. 0.90 (Draft) 45

9.4.2 Diagram extensions

9.4.2.1 Root notation

SysML extends the notation for classifiers and objects. It is possible to notate one or all of the more general classifiers. The
comma-separated list of general classifiers is shown in curly brackets above the classifier or object name. The list is ordered
and begins at the root of the generalization hierarchy. If there are more than one superclasses on the same level, they are sepa-
rated by a semicolon.

9.5 Compliance levels
The compliance levels are defined by the tables in section 9.2. SysML provides UML generalization sets, but exclude the use
of power types themselves. SysML also excludes the package merge relationship.

Figure 9-3. Root notation.

A

B

C {A,B}
C

S1

T

U

S2

{S1;S2, T}
U

46 SysML Specification v. 0.90 (Draft)

9.6 Usage examples

Figure 9-4. Class diagram

Figure 9-5. Root notation

cls Operational context

«system»
Vehicle

«external»
Environment

«external»
Driver

«external»
Vehicle

Occupant

«external»
Passenger

«external»
Vehicle
Cargo

«context»
Operational

«external»
Road

«external»
Weather

«external»
External
Object

cls Passengers

«external»
{VehicleOccupant, Passenger}

AdultPassenger

«external»
{VehicleOccupant, Passenger}

ChildPassenger
SysML Specification v. 0.90 (Draft) 47

Figure 9-6. Example of a dependency set

<<requirementPackage>>
S5.4 Brake assembly

S5.4.1 Master Cylinder Reservoir:
Requirement

S5.4.1a: Requirement

<<assembly>>
Brake System

m: MasterCylinder

l1: BrakeLine l2: BrakeLine

r: RearBrakef: FrontBrake

<<satisfy>>

<<rationale>>
body =”The best-practice solution consist in
assigning one reservoir per brakeline.”

Text = “Separate reservoir compartment
for each subsystem” <<satisfy>>

Design Decision D7.3

«satisfy»

Design Decision D7.3
48 SysML Specification v. 0.90 (Draft)

10 Assemblies

10.1 Overview
A SysML Assembly describes a system as a collection of parts which fill specific roles within a larger whole. The ownership
of parts by an assembly defines the boundary of a system. The assembly also shows the connections between parts that enable
their interoperation as part of a larger whole. Some of the parts of an assembly may be shown as ports, to indicate that they can
be connected externally in a larger context in which they are used. Each part can be defined by a class with its own parts, ports,
and internal structure, so a uniform set of elements can be applied across multiple levels of a system hierarchy.

The SysML assembly model provides a general-purpose capability to model systems as trees of modular components. The
specific kinds of components, the kinds of connections between them, and the ways these elements combine to define the total
system can all be selected according to the goals of a particular system model. The SysML assembly model facilitates reusing
a library of component definitions across many different contexts and roles where they might apply, either in different systems
or different roles within the same system.

The SysML assembly model can be used throughout all phases of system specification and design, and can be applied to
many different kinds of systems. These include modeling either the logical or physical decomposition of a system, the specifi-
cation of software, hardware, or human systems, and the use of parts that interact by many different means, such as software
operations, discrete state transitions, flows of inputs and outputs, or continuous interactions.

The SysML model of assemblies and its associated diagrams are based on the UML specification for Composite Struc-
tures. UML Composite Structures already provide the essential mechanisms to define a component in terms of structural fea-
tures belonging to a class. These include its internal parts, ports that can be used to connect it externally, and connections
between parts and ports that enable their interaction as part of a containing whole. UML Composite Structure diagrams can be
used to show either a “black box view,” in which only the externally visible elements are shown, or a “white box view,” which
shows the internal details of its parts and connections. They go further than the block diagram models common to many engi-
neering disciplines by specifying patterns of occurrences of their internal parts and connections, using structural features sup-
ported by UML classes.

To distinguish UML structured classes that adopt the SysML conventions for modeling system architecture, SysML
defines a stereotype of UML classes called «assembly». This stereotype must be applied to any class to enable the assembly
modeling extensions that SysML defines. It may also be used as a common root of user-defined stereotypes to classify specific
kinds of systems and the kinds of elements they contain. Because a SysML «assembly» is also a class, it may be used as the
type of any part, port, or other property of another assembly, thus providing a foundation for structural reuse at any level of a
system design.

Because SysML assemblies may be applied to a wide variety of system types, SysML assemblies include only a subset of
the modeling elements that UML defines for Composite Structures. Besides the general-purpose elements of parts, ports, and
connectors, UML Composite Structures provide additional support for systems in which requests are relayed to system com-
ponents responsible for performing them. SysML assemblies currently support only a domain-neutral approach to modeling of
systems in which services or responsibilities may not be so clearly defined, and which can be defined using only a subset of
UML facilities.

SysML encourages various forms of hybrid approaches in which UML modeling elements are used in combination with
the more domain-neutral elements of SysML. For example, the required and provided interfaces of UML can be used with
SysML assemblies in environments that support both. Hybrids of UML and SysML can be especially important for modeling
software-intensive systems, which may need additional specialized capabilities such as code generation. Because system and
software engineers often work together on the same projects and need to communicate closely as part of the same teams, it is
important that they share a common set of core concepts. To support both these groups, many tools may support both SysML
and UML capabilities on different parts of a larger system of systems.
SysML Specification v. 0.90 (Draft) 49

UML provides several related modeling facilities for reusable structures, and which apply them further to specific model-
ing needs. These include: 1) collaborations, which bind roles into a surrounding context but do not otherwise commit to a spe-
cific structure to be built in a target system; 2) structured classes, which define an encapsulation of a class by means of
communication across ports, and 3) components, which define modular units of a software system that may be deployed and
replaced in a target system. SysML assemblies define a more basic set of modeling elements than any of these, to enable the
modeling of system structures early in a development cycle before any commitment has been made as to which structures may
end up being realized in what specific form.

In particular, any part, port, or property of a SysML assembly may be defined with any UML type that the native environ-
ment supports. This includes other SysML assemblies, but may also include any other form UML classifier that defines its
own form of system structure. The ability to imbed one kind of system model within another can provide natural points of tran-
sition from the levels and views of a system in which software is not specifically addressed to those in which software is all-
important. Additionally, SysML facilities for views and allocation are specifically designed to support multiple representations
of the same system as it is refined and detailed throughout a development process. The ability to establish and maintain
explicit relationships between different representations of the same system is an essential foundation for the interdisciplinary
practice of systems engineering.
50 SysML Specification v. 0.90 (Draft)

10.2 Diagram elements

Table 5. Graphical nodes included in Assembly diagrams, at Basic compliance level.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

«assembly» SysML::Assemblies::Assembly Basic

Part UML::Property with
isComposite equal True

Basic

Non-composite
Property

UML::Property with
isComposite equal False

Basic

Port UML::Port Basic

Table 6. Graphical paths included in Assembly diagrams, at Basic compliance level.

PATH NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Connector UML::Connector Basic

«assembly»
ClassName

partName :
TypeName

propertyName:
TypeName

portName:
TypeName

connectorName: associationName
<Association Annotations>
SysML Specification v. 0.90 (Draft) 51

Table 7. Graphical nodes included in Assembly diagrams

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Port UML::Port Advanced

Property Path
Reference

UML::Property Advanced

Table 8. Graphical paths included in Assembly diagrams, at Advanced compliance level.

PATH NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Nested Connector End SysML:Assemblies:
NestedConnectorEnd

Basic

Nested Connector End SysML:Assemblies:
NestedConnectorEnd

Basic

portName:
TypeName

Name1.Name2...: TypeName

partName:

partName:
connectorName: associationName

<Association Annotations>

connectorName: associationName
<Association Annotations>portName:

portName:
52 SysML Specification v. 0.90 (Draft)

10.3 Package structure

Figure 10-1. Package structure for SysML assemblies.

10.4 UML extensions

10.4.1 Stereotypes

Abstract syntax

Package Assemblies

Figure 10-2. Stereotypes defined in the Assemblies package.

10.4.1.1 Assembly

Description

An «assembly» is a class that describes a structure of interconnected parts.

The SysML «assembly» stereotype indicates that a UML structured class is being utilized to express domain-neutral
semantics and to enable associated modeling facilities. A SysML «assembly» defines an abstract structural syntax that may be
used to model the structure of any kind of system, regardless of whether the components of the system consist of logical, phys-
ical, software, hardware, human, or other kinds of entities. This semantic assumption helps establish a simplicity and unifor-
mity to the system structure model supported by «assembly» classes.

UML::StructuredClasses

SysML::Assemblies

«import»

«metaclass»
UML::

StructuredClasses::
Class

«stereotype»
Assembly

«metaclass»
UML::

InternalStructures::
ConnectorEnd

propertyPath: Property [2..*] {ordered}

«stereotype»
NestedConnectorEnd
SysML Specification v. 0.90 (Draft) 53

 The elements of a SysML «assembly» class may be used to build domain-neutral views of system architecture, which
avoid using additional features of structured classes defined by UML. Some UML capabilities which SysML assemblies are
not required to support include the declaration of required or provided interfaces on the class or any of its ports, and specific
features of UML ports such as their links to actions or internal behavior. The capabilities of UML structured classes are impor-
tant for many specific kinds of systems, not only those implemented by software, but any system architecture in which clear
responsibilities and communication paths are established for services and requests. While SysML does not require all the
UML capabilities which apply to service-based architectures, it encourages support of these capabilities in combination with
SysML, just as it encourages combination of SysML with other extended capabilities for specific target domains.

The subset of features that SysML requires for an «assembly» class does not result in any loss of inherent modeling
power for systems in general. As much problem-specific detail as required can still be supplied by type declarations applied to
parts, ports, properties, and connectors. The subset of features required by the «assembly» stereotype enables support of a sim-
pler form of system structure model than a tool may support for specific domains such as software components or service-
based architectures. Compared to UML classes, SysML «assembly» classes reduce the number of elements and options that a
tool may choose to support, and they also simplify and standardize the use of classes to express system structure models. Their
relative simplicity and uniformity can reduce learning and aid communication across stakeholders having many different back-
grounds and areas of concern.

Besides the «assembly» stereotype, additional user-defined stereotypes may be defined and imported as part of a user pro-
file to categorize different kinds of systems and the roles they fill in a particular context. Such distinctions may indicate spe-
cific stages of refinement, such as logical vs. physical, or be relative to a particular context in which a system appears, such as
internal or external. Each such view can adopt or enforce its own conventions or rules for the modeling elements it imports or
allows to be included within a model. The «assembly» stereotype can be used as an initial common root for such user-defined
system types. See also the SysML facilities for allocation (in Chapter 16) and views (in Chapter 18) for additional ways to
establish system views and relate elements between them.

 Because of their definition as a stereotype of UML structured classes, any conventions of a SysML «assembly» are
imposed only on classes that explictly apply it. This means that a tool may still support the full unrestricted capabilities of
UML for other classes or types to which the stereotype has not been applied. These unrestricted classes may be used to type
the parts or properties of any class which applies the «assembly» stereotype. In particular, UML Components, ports typed by
UML Interfaces or linked to behavior, or classes without any other restrictions of a SysML «assembly» may be contained in
larger system models expressed using only «assembly» classes.

10.4.1.2 NestedConnectorEnd

The NestedConnectorEnd stereotype of a UML ConnectorEnd extends a UML ConnectorEnd, in which the connected prop-
erty must be owned directly by an enclosing class or part, so that the connected property may be identified by a multi-level
path of accessible properties from the classifier that owns the connector.

The propertyPath list of the NestedConnectorEnd stereotype must identify a path of containing properties that identify the
connected property in the context of the classifier that owns the connector. The ordering of properties is from the outermost
property of the assembly that owns the connector, through the properties of each intermediate class that types the preceding
property, but not including the property which is directly connected.

Constraints
[1] The property at the first position in the propertyPath attribute of the NestedConnectorEnd must be owned by the class that

owns the connector.

[2] The property at each successive position of the propertyPath attribute, following the first position, must be contained in
the class that types the property at the immediately preceding position.
54 SysML Specification v. 0.90 (Draft)

10.4.2 Diagram extensions

10.4.2.1 Nested connector end

Connectors may be drawn that cross the boundaries of nested properties (including parts and ports) to connect to properties
within them. The connector is owned by the most immediate class that owns both ends of the connector. A NestedConnec-
torEnd stereotype of a UML ConnectorEnd is automatically applied to any connector end that is nested more than one level
deep within a containing context.

Use of nested connector ends violates encapsulation of the parts, ports, or other properties which a connector line crosses.
The need for nested connector ends can be avoided if additional delegation ports are added to the class at each containing
level. Nested connector ends are available for use in case the introduction of delegation ports is not feasible or appropriate,
which must be judged according to principles guiding a particular design.

The ability to connect to nested properties within a containing class requires that multiple levels of decomposition be
shown on the same diagram, either within a part or other property, or within a port on the boundary of another part. Showing
the parts or ports on another port requires that the port be expanded from a small box on the part boundary to a larger box on
the part boundary which shows nested ports or parts.

10.4.2.2 Property path reference

A property box may contain a name which references a property accessible through a sequence of intermediate properties from
a referencing context. The name of the referenced property is built by a string of names separated by “.”, resulting in a form of
path name which identifies the property in its local context. A colon and the type name for the property may optionally be
shown following the dotted name string.

This notation is purely a notational shorthand for a property which could otherwise be shown within a structure of nested
property boxes, with the names in the dotted string taken from the name that would appear at each level of nesting. In other
words, the notation at the left in Figure 10-3 below is equivalent to the innermost nested box at the right:

Figure 10-3. Nested property reference.

A nested property reference is shown as a dashed-outline box if any of the properties in its intervening levels would be shown
with a dashed-outline box; otherwise, a solid-outline box is shown.

10.4.2.3 Property with value type always shown as part

A property that is typed by a DataType is always shown as a solid-outline box, regardless of the setting of the isComposite
property. Composition is implicit for properties that have values without identity, since their values can only exist within the
property. SysML assemblies may show them as parts regardless of whether the isComposite property on the Property meta-
class is set.

Name1.Name2.Name3

Name1
Name 2

Name3
SysML Specification v. 0.90 (Draft) 55

10.5 Compliance levels
Elements have the compliance levels as indicated in the diagram elements table above.

10.6 Usage examples

10.6.1 System hierarchy

The Examples appendix (Appendix B) shows various examples of stereotypes of classes used to indicate various views of sys-
tems and levels within an overall “system of systems,” including a top-level context that includes external systems as well as a
specific system of interest. All these stereotypes would typically be defined as specializations of «assembly» so that additional
details of internal structure and connections could be provided. See, for example, B1.1, Concept Diagram for the “Vehicle Sys-
tem Operational Context”, and B1.2, Class Diagram for the “Vehicle System Operational Context,” which apply role classifi-
cations of «context», «external», and «system» at the top level of a system hierarchy. B1.9, Class Diagram for the “Vehicle
System Hierarchy,” shows the use of assembly classes at progressively lower levels of the systems hierarchy. Finally, B1.10,
Assembly Diagram for the “Power Subsystem,” shows the use of an assembly diagram to detail the internal structure at a par-
ticular level of the hierarchy. It also shows the use of item flows on assembly connectors, which are specified in Chapter 18,
Auxiliary Constructs.
56 SysML Specification v. 0.90 (Draft)

10.6.2 Engineering block diagram example

Many different engineering disciplines support visual diagramming tools in which components of a system may be selected
from a library and “wired together” using lines to connect them at defined attachment points. Some forms of these diagrams
can generate a complete system of equations or other representations that allow them to be simulated or analyzed as part of a
larger system. This example is a simple form of a mass-spring-damper system that might be included, for example, as part of a
vehicle suspension system. Figure 10-4 shows a diagram of the system as it might be represented in a typical engineering
block diagram tool. Figure 10-5 shows the same system represented as a SysML Assembly diagram. The classes which type
the parts in the assembly diagram would typically be defined already in a library of standard components, and imported for use
in this assembly.

Figure 10-4. Mass-spring-damper example as engineering block diagram.

Figure 10-5. Mass-spring-damper example as SysML Assembly diagram.

M

kB

x In

asm: Suspended Mass

M1: Sliding Mass

D1: Damper S1: Spring

x In: Connection Point

C1: Connection Point

C2: Connection Point

C1:Connection Point

C2: Connection Point

C1: Connection Point
SysML Specification v. 0.90 (Draft) 57

10.6.3 Laptop power adapter

This example shows two levels of an assembly in which one component, a standard form of power adapter for a laptop com-
puter made of the adapter itself plus a separate line cord, establishes an indirect connection between two parts of a larger sys-
tem, the laptop computer and a power outlet. In the top-level setup, the connectors from the power adapter to both the laptop
and power outlet are typed by associations, which are assumed to have been defined on a class diagram elsewhere and
imported for use in this assembly..

Figure 10-6. Laptop power adapter.

asm: Laptop Power Adapter

P1: Power Adapter P2: US Adapter Cord

DC Out:
18.5 VDC Plug

AC In: US
3Pin AC Plug

AC Out: Universal
3-Pin AC Socket

AC In: Universal
3-Pin AC Plug

DC Out:
18.5 VDC Plug

AC In: US
3Pin AC Plug

asm: Laptop Power Setup

: Laptop Power
Adapter

: Laptop
Computer

DC In: 18.5
VDC Socket

AC In: U.S.
3Pin AC Plug

DC Out: 18.5
VDC Plug

: AC Power Network

AC Socket: U.S.
3Pin AC Socket

: DC Plug
Connection

: AC Plug
Connection
58 SysML Specification v. 0.90 (Draft)

10.6.4 Automobile fuel system

This example shows an example usage of nested connector ends.

Figure 10-7. Automobile fuel system.

asm: Automobile

e: V-8 Engine

c: Cylinder
4

f: Fuel System

i: Injector 8
ecu1: Engine ECU

p1:
Accelerator

Pedal

a: Angle
t: Trigger

b: CylinderBank 2
SysML Specification v. 0.90 (Draft) 59

60 SysML Specification v. 0.90 (Draft)

11 Parametrics

11.1 Overview
Parametric constraints provides mechanisms for integrating engineering analysis such as performance and reliability models
with SysML assemblies. Parametric constraints depict a network of constraints among properties of a system. These con-
straints may be used to express mathematical expressions such as F=m*a and a = dv/dt that relate the properties of physical
systems such as the aerodynamic forces on an airplane. Such constraints can also be used to identify critical performance
parameters and their relationships to other parameters, which can be tracked throughout the system life cycle.

Parametric models are analysis models that define a set of system properties and parametric relationships between them.
A parametric relationship states how a change to the value of one property impacts the value of other properties. Typically,
these properties express quantitative characteristics of a system, but parametric models may be used on non-quantitive proper-
ties as well. Parametric relationships are non-directional and so have no notion of causality. A parametric constraint can be
used to express relationships between properties that are identified in the structural model of the system. These relationships
can be built by reusing more primitive parametric relations such as basic mathematical operators.

Time can be modeled as an additional property that other properties can be dependent on. The time reference can be estab-
lished by a local or global clock which produces a continuous or discrete time value, and which is defined by a property at
some level of the system. Other values of time can be derived from this clock, by introducing other clocks that introduce
delays and/or skew into the value of time. The Time property of a clock can typed by a Real type or Quantity class (see chapter
18, Auxiliary Constructs) and can be connected, via a property binding, to a parameter of a parametric constraint. Discrete val-
ues of time as well as calendar time can be derived from this global time property. UML offers more sophisicated descriptions
of time, via the Time package in the UML 2 superstructure (ptc/03-08-02), which offers a simple view of synchronised time,
and the Time Modeling subprofile of the UML Profile for Schedulability, Performance and Time (ptc/04-02-01), which offers
a distributed model of time.

Parametric constraints can be dependent on the state of the object. To accomplish this, the state can be defined as a prop-
erty of the object which is bound to parameters of the applicable parametric relationships.

Parametric models can be used to support tradeoff analysis. A parametric relation can be defined that represents an evalu-
ation function to evaluate alternative solutions. The evaluation function produces one or more outputs that typically represent
a general measure of effectiveness or merit. This evaluation function may include a weighting of utility functions associated
with various criteria used to evaluate the alternatives. These criteria may be associated with selected system performance, cost,
and physical properties. The corresponding properties from each alternative is put into the evaluation function to determine the
overall measure of effectiveness. These properties may have probability distributions associated with them that are also fed
into the evaluation function to compute a probabilistic or expected measure of goodness.

SysML identifies and names parametric constraints, but does not specify a computer interpretable language for them.
SysML relies on other mathematical description languages such as MathML and associated tools to provide the execution
engine for these relationships. SysML model libraries can be used to specify standard parametric relationships of general use
and more customized relations for specific domains (e.g., Ohm’s law for the electrical domain).

Parametric constraints are typically used in combination with SysML assembly diagrams. A parametric constraint is
defined by a stereotype of «paramConstraint» applied to a class definition. The properties of this class define the parameters of
the constraint. The usage of a parametric constraint is shown by a part within an assembly, where its parameters are bound to
other properties in the assembly to describe relationships between them. The usage of a parametric constraint is distinguished
from other parts by a box having rounded corners rather than the square corners of an ordinary part.

The stereotype «paramConstraint» specifies that the parametric structure is used only to constrain the values of other
properties in a containing context. The only valid usage of a parametric constraint is to bind the values of its parameters to
other properties in a containing assembly. The semantics for any given parametric constraint (e.g., a mathematical relation
between its parameter values) must be specified by whoever provides the relevant parametric constraint, either by informal
specification or by a UML constraint provided within the parametric constraint definition.
SysML Specification v. 0.90 (Draft) 61

11.2 Diagram elements

Table 9. Graphical nodes included in parametric diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Parametric
Constraint
Definition

SysML::Parametrics::
ParamConstraint

Advanced

Parametric
Constraint
Usage

SysML::Property with
isComposite equal True

Advanced

Parametric
Constraint
Parameter

UML::Port Advanced

Parametric
Constraint
Parameter

UML::Port Advanced

Value Binding
Constraint

SysML::ParametricCon-
straints::Binding

Advanced

«paramConstraint»
ConstraintName

«assembly»
AssemblyName

«paramConstraint»
Name: TypeName

parameterName:
TypeName

parameterName: TypeName
62 SysML Specification v. 0.90 (Draft)

11.3 Package structure

11.4 UML extensions

11.4.1 Stereotypes

Abstract syntax

Package ParametricConstraints

11.4.1.1 ParamConstraint

Description

A parametric constraint is an assembly used only to constrain the values of properties within a containing assembly.

The SysML «paramConstraint» stereotype declares that an assembly is defined for use as a parametric constraint. Its ports
define the parameters of the parametric constraint. The only valid usage of a «paramConstraint» assembly is to bind its param-

Figure 11-1. Package structure for SysML parametric constraints.

Figure 11-2. Stereotypes defined in ParametricConstraints package.

SysML::Assemblies

«import»

SysML::ParametricConstraints

«stereotype»
Assembly

ParamConstraint

UML::
InternalStructures::

Connector

«stereotype»
ValueBindingConstraint
SysML Specification v. 0.90 (Draft) 63

eters to other properties of a containing assembly using a value binding constraint. A parametric constraint may contain other
parametric constraints internally, to define the constraint as a composition of other constraints, but it may not contain any other
parts or properties that would define any internal state of the constraint separate from the binding of its parameters. A paramet-
ric constraint does not specify any direction of causality by which the relation of its parameter values is established, but only
specifies that a given relation is required to hold across its bound values. The specific relation that a parametric constraint
defines may be specified either by a UML constraint on the constraint class, or by informal specification in documentation for
the constraint.

11.4.1.2 ValueBindingConstraint

Description

The ValueBindingConstraint stereotype of a Connector declares that two connected properties are constrained to have equal
values.

This constraint is defined as a stereotype of connector rather than a specialized form of UML constraint because only a
connector has the built-in capability to connect to properties in the nested context of a containing assembly, and so that a mul-
tiplicity may also be specified on either end.

See Section 11.5.2, “Value Binding Constraint shown as a dashed line,” for the diagram notation with which a ValueBind-
ingConstraint is shown on an assembly or parametric diagram.

Constraints
[1] The “type” association from a «binding» connector to an association that types the connector must be empty.

[2] The multiplicity of a «binding» connector must be exactly one on one end, and zero or one on the other end.

[3] The types of two properties connected by a value binding constraint must be compatible to the extent that equal values are
possible.

11.5 Diagram extensions

11.5.1 Parametric diagram

Description

A special diagram type, indicated on the diagram frame by a diagram kind of “parametric” or the abbreviation “par” (see
Appendix A, Diagrams), is available to show parametric constraints with special graphical conventions. Parametric constraints
can also be shown on ordinary assembly diagrams, where the special graphical conventions for a parametric constraint must
also be used.

On a parametric diagram, the usage of a parametric constraint is distinguished graphically from other parts of an assembly
diagram by a box having round rather than square corners. The round-cornered notation is automatically applied when a part is
typed by a class to which the «paramConstraint» stereotype has been applied. The keyword «paramConstraint» must precede
the name of the property within the round-cornered box.

Additionally, on a parametric diagram any connector to a parametric constraint without any connector name, role names,
or association name is automatically interpreted as having the «binding» stereotype of connector applied. Other than this spe-
cial interpretation of unnamed connectors, a parametric diagram supports all the diagram capability of an assembly diagram.
64 SysML Specification v. 0.90 (Draft)

11.5.2 Value Binding Constraint shown as a dashed line

Description

The ValueBindingConstraint stereotype of a Connector is shown on an assembly or parametric diagram as a simple dashed line
with no arrowheads, names, or other notations except for the optional presence of multiplicities.

11.6 Compliance levels
Because parametrics frequently need to connect to properties nested more than one level deep in an assembly, which is an
advanced feature of SysML assemblies, all elements of the parametrics chapter are assigned to the advanced compliance level.

11.7 Usage examples

11.7.1 Definition of parametric constraints on a class diagram

Parametric constraints can only be defined on a class diagram, where they must have the «paramConstraint» stereotype
applied. This diagram shows two parametric constraints that are used in the subsequent firing range examples. The strings in
braces below the class names are ordinary UML constraints, using a special compartment to hold the constraint, which is one
of the options a tool may provide. These particular constraints are specified only in an informal language, but a more formal
language such as MathML could also be used. The types of the properties shown in the attributes compartment of parametric
constraint classes use Quantity subclasses defined in Chapter 18, Auxiliary Constructs.

Figure 11-3. Parametric constraint definitions.

cls

m: Mass
v: Volume
d: Density

{m = v * d}

«paramConstraint»
MassRelation

f: Force
m: Mass
a: Acceleration

{f = m * a}

«paramConstraint»
Newton's Law
SysML Specification v. 0.90 (Draft) 65

11.7.2 Usage of parametric constraints on an assembly diagram

This example shows the usage of parametric constraints on an assembly diagram. Showing parametric constraints on an
assembly diagram allows them to be mixed with other part, property, and connector definitions, but requires that the paramet-
ric constraint usages and their binding connectors be shown without any special notation. As with the previous example, the
types of the properties shown in the attributes compartment of the nested Cannon and Shot classes use Quantity subclasses
defined in Chapter 18, Auxiliary Constructs. This example uses a separate class diagram to define the classes Cannon .

Figure 11-4. Parametric constraints on an assembly diagram.

asm: Firing Range

«paramConstraint»
R1: Newton's Law

«paramConstraint»
R2: MassRelation

c: Cannon

s: Shot density

acceleration

volume

d

v

m

f

a

m

force
0..1

0..1

current
projectile

cls

c: Cannon
s: Shot

Firing Range

force: Force

Cannon

volume: Volume
density: Density
acceleration: Acceleration

Shot
66 SysML Specification v. 0.90 (Draft)

11.7.3 Usage of parametric constraints on a parametric diagram

This example shows the use of parametric constraints on a parametric diagram. This diagram shows the use of nested property
references to the properties of the parts C and S, which are assumed in this example to have already been defined as part of a
Firing Range assembly. Parametric diagrams can make use of the nested property name notation to refer to multiple levels of
nested property containment, not just one level deep as in this example.

Figure 11-5. Parametric constraints on a parametric diagram.

par: Firing Range

C.force:

S.density:

S.acceleration:

S.volume:

«paramConstraint»
R2: MassRelation

d:

v:

m:

«paramConstraint»
R1: Newton's Law

f:

a:

m:
SysML Specification v. 0.90 (Draft) 67

11.7.4 System of equations

See Sample Problem B.4.12 for an example of a complete system of equations expressing performance parameters of a vehicle
using a parametric diagram.

Editorial Comment: A self-contained example is still needed to show full details of a system structure with its
properties, with a system of equations on this structure expressed in both textual and graphical forms.
68 SysML Specification v. 0.90 (Draft)

Part III - Behavioral Constructs
This Part specifies the dynamic, behavioral constructs used in SysML behavioral diagrams, such as Activity diagrams,
Sequence diagrams, and State Machine diagrams. The Activity represents the basic unit of behavior that is used in all behav-
ioral diagrams. An activity is a behavior that is composed of actions, some of which may invoke other activities. The State
Machine diagram includes activities that are invoked during transition between states, upon entry or exit from a state, or while
in a state. The Sequence diagram includes activities as methods of operations that are invoked by messages. The following
chapters are organized by major diagram type.
SysML Specification v. 0.90 (Draft) 69

70 SysML Specification v. 0.90 (Draft)

12 Activities

12.1 Overview
Activity modeling emphasizes the inputs and outputs, sequence, and conditions for coordinating other behaviors. It provides
a flexible link to classifiers owning those behaviors. Activity diagrams are similar to Enhanced Functional Flow Block Dia-
grams (EFFBD), although the terminology and notation are different (Appendix C). The following is a summary of the SysML
extensions to UML 2 activity diagrams.

Control as data

SysML extends control in activity diagrams to give the functionality of data:

1. In UML 2 Activities, control can only enable actions to start. SysML extends this with control for disabling actions that
are already executing, by providing a model library with a type for control values (see “ControlValue” in Figure 12-8).

2. The above is also used to support control processed by behaviors called control operators, rather than determining
whether the behavior starts or not (see “ControlOperator” in Figure 12-2). Control operators can represent a complex log-
ical operator that transform its inputs to produce an output that controls other actions.

Continuous systems

SysML provides extensions that might be very loosely grouped under the term “continuous”, but are generally applicable to
any sort of distributed flow of information and physical items through a system. These are:

1. SysML supports restrictions on the rate at which entities flow along edges in an activity, or in and out of parameters of a
behavior (see “Rate” in Figure 12-2). This includes both discrete and continuous flows, either of material, energy, or
information. Discrete and continuous flows are unified under rate of flow, as is traditionally done in mathematical models
of continuous change.

2. SysML extends object nodes, including pins, with the option for newly arriving values to replace values that are already in
the object nodes (see “Overwrite” in Figure 12-2). It also extends object nodes with the option to discard values if they do
not immediately flow downstream (see “NoBuffer” in Figure 12-2). These two extensions are useful for ensuring that the
most recent information is available to actions by indicating when old values should not be kept in object nodes, and for
preventing fast or continuously flowing values from collecting in an object node, as well as modeling transient values,
such as electrical signals.

Probability

SysML introduces probability into activities as follows (see “Probability” in Figure 12-2):

1. SysML extends edges with expressions evaluating to probabilities for the likelihood that a value leaving the decision node
or object node will traverse an edge.

2. SysML extends output parameter sets with probabilities for the likelihood that values will be output on a parameter set.

EFFBD extensions

EFFBD’s are supported as optional extensions and translations to Activity Diagrams. The extension includes:

1. Constraints on usage of activity diagrams (section 12.4.4.1).
2. Additional notation (section 12.4.4.2).
SysML Specification v. 0.90 (Draft) 71

Activities as classes

In UML 2, all behaviors are classes, including activities, and their instances are executions. Behaviors can appear on class
diagrams, and participate in generalization and associations. SysML extends the class diagram notation for activities, and
clarifies the semantics of composition association between activities, and between activities and classes that type object
nodes in the activities, and defines consistency rules between these class diagrams and activity diagrams. See section 12.4.2.

12.2 Diagram elements
This section covers the concrete syntax added by SysML and inherited from UML. It identifies the compliance level for each
element. Compliance may vary for subelements of each one, see section 12.5 for details.

12.2.1 Diagram elements

SysML activity concrete syntax is the same as the UML 2 activity and action concrete syntax, with keywords and properties
per the SysML abstract syntax. No new graphical nodes or paths are defined. Table 10, Table 11, and Table 12 list the SysML
extensions to UML 2 notation. The left column is the class or property, with classes in uppercase, properties in lower case.
The second column from the right column references the class or class of the property. The corresponding table for UML 2
activities is in the Diagram section of Chapter 12 of the the UML 2 Superstructure specification, http://www.omg.org/cgi-bin/
doc?ptc/03-08-02.

Table 10. Graphical nodes included in activity diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

ControlOperator SysML::«controlOperator» Advanced

NullTransformation SysML::NullTransformation (in
model library)

Advanced

ResourceConstraint SysML::«resourceConstraint» Advanced

Action UML::Action Basic

«controlOperator»
Function

NullTransformation

«resourceConstraint»
72 SysML Specification v. 0.90 (Draft)

ActivityFinal UML::ActivityFinalNode Basic

ActivityNode See ExecutableNode, ControlNode, and
ObjectNode.

UML::ActivityNode Basic

ControlNode See DecisionNode, FinalNode, ForkNode,
InitialNode, JoinNode, and MergeNode.

UML::ControlNode Basic

DecisionNode UML::DecisionNode Basic

FinalNode See ActivityFinal and FlowFinal. UML::FinalNode Basic

FlowFinal UML::FlowFinalNode Advanced

ForkNode UML::ForkNode Basic

InitialNode UML::InitialNode Basic

JoinNode UML::JoinNode Basic

MergeNode UML::MergeNode Basic

Table 10. Graphical nodes included in activity diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

...
...

...
...
SysML Specification v. 0.90 (Draft) 73

ObjectNode UML::OjectNode and its chil-
dren.

Basic

Table 11. Graphical paths included in activity diagrams.

PATH NAME CONCRETE SYNTAX
ABSTRACT SYNTAX

REFERENCE
COMPLIANCE

Rate SysML::«rate»,
SysML::«continuous»,
SysML::«discrete»

Advanced

Rate { rate = constant }
{ rate = distribution }

SysML::«rate» Advanced

Table 10. Graphical nodes included in activity diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

{ rate = constant }
{ rate = distribution }

«discrete»
Object Node

«continuous»

«continuous»
Object Node

«discrete»

{ rate = constant }
{ rate = distribution }

Object Node

{ rate = constant }
{ rate = distribution }

Object Node

Object Node

«rate»
rate = constant

rate = distribution
74 SysML Specification v. 0.90 (Draft)

OverWrite SysML::«overwrite» Advanced

NoBuffer SysML::«noBuffer» Advanced

Probability SysML::«probability» Advanced

Optional SysML::«optional» Basic

Table 11. Graphical paths included in activity diagrams.

PATH NAME CONCRETE SYNTAX
ABSTRACT SYNTAX

REFERENCE
COMPLIANCE

«overwrite»
Function

«overwrite»

«overwrite»
Object Node

«noBuffer»
Object Node

«noBuffer»
Function

«noBuffer»

{ probability = valueSpecification }

Function

{ probability =
valueSpecification }

{ probability =
valueSpecification }

«optional»
Function

«optional»
SysML Specification v. 0.90 (Draft) 75

isControl UML::Pin.isControl Advanced

isStream UML::Parame-
ter.isStream

Advanced

ActivityEdge See ControlFlow and ObjectFlow. UML::ActivityEdge Basic

ControlFlow UML::ControlFlow
SysML::ControlFlow

Basic

ObjectFlow UML::ObjectFlow and
its children.

Basic

Table 12. Other graphical elements included in activity diagrams.

ELEMENT NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Activity, ObejctNode,
Association on Class
Diagram

SysML::Activity,
SysML:ObjectNode

Advanced

Table 11. Graphical paths included in activity diagrams.

PATH NAME CONCRETE SYNTAX
ABSTRACT SYNTAX

REFERENCE
COMPLIANCE

{ control }
Function

{ control }

{ stream }
Function

{ stream }

«activity»
activity name

action
name

«activity»
activity name

«activity»
activity name

object
node
name

«class»
class name
76 SysML Specification v. 0.90 (Draft)

Activity UML::Activity Basic

ActivityPartition UML::ActivityPartition Basic

InterruptibleActivity-
Region

UML:InterruptibleActivityRe-
gion

Advanced

Local pre- and post-
conditions.

UML:Action Advanced

ParameterSet UML::ParameterSet Advanced

Table 12. Other graphical elements included in activity diagrams.

ELEMENT NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Activity name

...
...

...

Parameter name: type

Pa
rti

tio
n

N
am

e

invocation
(Partition Name)

«localPrecondition»
constraint

name

«localPostcondition»
constraint
SysML Specification v. 0.90 (Draft) 77

12.3 Package structure
SysML Activities depends on UML Activities, as shown in Figure 12-1. It also depends on the Quantities model library, used
here at the metalevel, and a metamodel version of the Distributions stereotypes. The Activities model library has elements that
are instances of UML BasicActivities metaclasses.

Figure 12-1. Package structure for SysML activities.

UML::CompleteActivities Quantities

Activities

<<merge>>

Activities Model
Library

<<modelLibrary>>

UML: BasicActivities
78 SysML Specification v. 0.90 (Draft)

12.4 UML extensions

12.4.1 Stereotypes

See constraints on application of stereotypes in the entry for each stereotype, in particular, the absence of a stereotype can
sometimes indicate a constraint.

Figure 12-2. Stereotypes for behavior, behavior elements, and activity elements.

Figure 12-3. Stereotypes for resources.

UML : Behavior
<<metaclass>>

ControlOperator
<<stereotype>>

UML : ObjectNode
<<metaclass>>

Overwrite
<<stereotype>>

UML : ActivityEdge
<<metaclass>>

UML : Parameter
<<metaclass>>

Optional
<<stereotype>>

NoBuffer
<<stereotype>>

UML : ParameterSet
<<metaclass>>

Probability

probability : UML:ValueSpecification

<<stereotype>>

UML : Operation
<<metaclass>>

Rate

rate : Quantity

<<stereotype>>

Discrete
<<stereotype>>

Continuous
<<stereotype>>

UML : Constraint
<<metaclass>>

ResourceConstraint

resourceClass : UML : Class [*]

<<stereotype>>
SysML Specification v. 0.90 (Draft) 79

12.4.1.1 Continuous

This is a kind of Rate stereotype representing a rate of flow for items treated as infintesimals for the purpose of the application,
for example, water flowing a pipe, or entities the application considers small enough to treat as continuously flowing, such as
ball bearings in a factory that produces them. It is independent from UML streaming, see “Rate”. A streaming parameter may
result in continuous flows or not, and a continuous flow may involve streaming parameters or not.

UML places no restriction on the rate at which tokens flow. In particular, the time between tokens can approach as close
to zero as needed, for example to simulate continuous flow. There is also no restriction in UML on the kinds of values that
flow through an activity. In particular, the value may represent as small a number as needed, for example to simulate continu-
ous material or energy flow. Finally, the exact timing of token flow is not completely prescribed in UML. In particular, token
flow on different edges may be coordinated to occur in a clocked fashion, as in time march algorithms for numerical solvers of
ordinary differential equations, such as Runge-Kutta.

Constraints

[1] The «continuous» and «discrete» stereotypes cannot be applied to the same element at the same time.

[2] The «nobuffer» stereotype always applies to object nodes that have an incoming edge stereotyped by «continuous».

12.4.1.2 ControlOperator

Description

When the «controlOperator» stereotype is applied to behaviors, the behavior takes control values as inputs or provides them
as outputs, that is, it treats control as data (see “ControlValue” in section 12.4.3.1). The control values do not enable or disable
the control operator execution based on their value, they only enable based on their presence as data. Pins for control param-
eters are regular pins, not UML control pins. This is so the control value is passed into or out of the action and the invoked
behavior, rather than control the starting of the action, or indicating the ending of it. When the «controlOperator» stereotype is
not applied, the behavior may not have a parameter typed by ControlValue. The «controlOperator» stereotype also applies to
operations, with the same semantics.

Constraints

[1] When the «controlOperator» stereotype is applied, the behavior or operation must have at least one parameter typed by
ControlValue, otherwise the behavior or operation must have no parameter typed by ControlValue.

[2] A method behavior must have the «controlOperator» stereotype applied if its operation does.

12.4.1.3 Discrete

This is a kind of Rate stereotype representing a rate of flow for items treated as individuals for the purpose of the application,
for example, cars in a car factory.

Constraints

[1] The «discrete» and «continuous» stereotypes cannot be applied to the same element at the same time.

12.4.1.4 NoBuffer

Description

When the «nobuffer» stereotype is applied to object nodes, tokens arriving at the node that are refused by outgoing edges, or
refused by actions for object nodes that are input pins, are discarded. This is typically used with fast or continuously flowing
80 SysML Specification v. 0.90 (Draft)

values, to prevent buffer overrun, or to model transient values, such as electrical signals. For object nodes that are the target of
continuous flows, «nobuffer» and «overwrite» have the same effect. When the stereotype is not applied, the semantics is as in
UML, specifically, tokens arriving at an object node that are refused by outgoing edges, or action for input pins, are held until
they can leave the object node.

Constraints

[1] The «nobuffer» and «overwrite» stereotypes cannot be applied to the same element at the same time.

12.4.1.5 Overwrite

Description

When the «overwrite» stereotype is applied to object nodes, a token arriving at a full object node replaces the ones already
there (a full object node has as many tokens as allowed by its upper bound). This is typically used on an input pin with an
upper bound of 1 to ensure that stale data is overridden at an input pin. For upper bounds greater than one, the token replaced
is nondeterministic. A null token removes all the tokens already there. The number of tokens replaced is equal to the weight of
the incoming edge, which defaults to 1. For object nodes that are the target of continuous flows, «overwrite» and «nobuffer»
have the same effect. When the stereotype is not applied, the semantics is as in UML, specifically, tokens arriving an object
nodes do not replace ones that are already there.

Constraints

[1] The «overwrite» and «nobuffer» stereotypes cannot be applied to the same element at the same time..

12.4.1.6 Optional

Description

When the «optional» stereotype is applied to parameters, the lower multiplicity must be equal to zero. Otherwise, the lower
multiplicity must be greater than zero, which is called “required”.

Constraints

[1] A parameter with the «optional» stereotypes applied must have multiplicity.lower equal to zero, otherwise multiplic-
ity.lower must be greater than zero.

12.4.1.7 Probability

Description

When the «probability» stereotype is applied to edges coming out of decision nodes and object nodes, it provides an expres-
sion for the probability that the edge will be traversed. These must be between zero and one inclusive, and add up to one for
edges with same source at the time the probabilities are used.

When the «probability» stereotype is applied to output parameter sets, it gives the probability the parameter set will be given
values at runtime. These must be between zero and one inclusive, and add up to one for output parameter sets of the same
behavior at the time the probabilities are used.

Constraints

[1] The «probability» stereotype can only be applied to activity edges that have decision nodes or object nodes as sources, or
to output parameter sets.
SysML Specification v. 0.90 (Draft) 81

[2] When the «probability» stereotype is applied to an output parameter set, all of the output parameters of the behavior own-
ing the parameter set must be in some parameter set.

12.4.1.8 Rate

Description

When the «rate» stereotype is applied to an activity edge, it specifies the rate over time that objects and values traverse the
edge. When the stereotype is applied to a parameter, the parameter must be streaming, and the stereotype gives the rate over
time that objects or values are expected to flow in or out of the parameter. Streaming is a characteristic of UML behavior
parameters that supports the input and output of items while a behavior is executing, rather than only when the behavior starts
and stops. The flow may be continuous or discrete, see the specialized rates in section 12.4.3, and section 12.4.1.3. The
«rate» stereotype has a rate property of type Quantity, which includes distributed quantities, see Chapter 18. The quantity
must have units and dimensions appropriate to rates of flow.

Constraints
[1] When the «rate» stereotype is applied to parameter, the parameter must be streaming.

[2] The denominator for units used in the rate property must be time units.

12.4.1.9 ResourceConstraint

Description

When the «resourceConstraint» stereotype is applied to a constraint, the constraint can specify the types of resources used by
the model element it constrains.

12.4.2 Diagram extensions

Notation for the stereotypes in section 12.4.1 follow the UML standard conventions for stereotypes, as extended by SysML,
and shown in section 12.2. The entries below give notational extensions for some UML elements.

12.4.2.1 Activity

Notation

In UML 2, all behaviors are classes, including activities, and their instances are executions. The semantics for composition
associations between activities is the same as the UML semantics for composite associations and activity termination: termi-
nating the activity, that is, destroying an instance of that activity, causes the termination of the executions that it started through
CallBehaviorAction, that is, destroying the composed instances also. The upper multiplicity on the part end restricts the num-
ber of concurrent synchronous executions of the behavior that can be invoked by the containing activity. See Constraints,
below.
82 SysML Specification v. 0.90 (Draft)

Activities in class diagrams appear as regular classes, optionally using the «activity» keyword for clarity, as shown in Figure
12-4. See example in section 12.6. They may also use the same notation as CallBehaviorAction, except the rake notation can
be omitted, if desired. Also see use of activities in class diagrams at ObjectNode.

CallBehaviorActions in activity diagrams can optionally show the action name with the name of the invoked behavior using
the colon notation shown in Figure Figure 12-5.

Constraints

The following constraints apply when composite associations in class diagrams are defined between activities:

[1] The part end name must be the same as the name of a synchronous CallBehaviorAction in the composite activity. If the
action has no name, and the invoked activity is only used once in the calling activity, then the end name is the same as
name of the invoked activity.

[2] The part end activity must be the same as the activity invoked by the corresponding CallBehaviorAction.

[3] The lower multiplicity at the part end must be zero.

[4] The upper multiplicity at the part end must be 1 if the corresponding action invokes a nonreentrant behavior.

12.4.2.2 ControlFlow

Presentation Option

Control flow may be notated with a dashed line and stick arrowhead.

Figure 12-4. Activities as classes.

Figure 12-5. CallBehaviorAction notation.

action
name

action
name

action
name

«activity»
activity name

«activity»
activity name

«activity»
activity name

«activity»
activity name

action
name

«activity»
activity name

action name : behavior name
SysML Specification v. 0.90 (Draft) 83

12.4.2.3 ObjectNode

Notation

Classes that type object nodes may appear in class diagrams associated with the activity containing the object node, as shown
in Figure 12-6. The associations may be composite if the intention is to delete instances of the class flowing the activity when
the activity is terminated. See example in Section 12.6 .

Object nodes in activity diagrams can optionally show the node name with the name of the type of the object node as shown in
Figure 12-7.

Constraints

The following constraints apply when associations in class diagrams are defined between activities and classes typing object
nodes:

[1] The end name towards the object node type is the same as the name of an object node in the activity at the other end.

[2] The class must be the same as the type of the corresponding object node.

[3] The lower multiplicity at the object node type end must be zero.

[4] The upper multiplicity at the object node type end must be equal to the upper bound of the corresponding object node.

12.4.3 Model library

Editorial Comment: Guidelines for model library definitions are still being established.

Figure 12-6. Activities as classes associated with types of object nodes.

Figure 12-7. ObjectNode notation.

object
node
name

object
node
name

object
node
name

«activity»
activity name

«activity»
activity name

object
node
name

«class»
class name

«class»
class name

«class»
class name

object node name : class name
84 SysML Specification v. 0.90 (Draft)

The SysML model library for activities is shown below.

12.4.3.1 ControlValue

Description

The ControlValue enumeration is a type available for modelers to apply when control is to be treated as data (see section
12.4.1.2) and for UML control pins. It can be used for behavior and operation parameters, object nodes, and attributes, and so
on. The possible runtime values are given as enumeration literals. Modelers can extend the enumeration with additional liter-
als, such as suspend, resume, with their own semantics.

The disable literal means a termination of an executing behavior that can only be started again from the beginning (com-
pare to suspend). The enable literal means to start a new execution of a behavior (compare to resume).

Constraints

[1] UML::ObjectNode::isControlType is true for object nodes with type ControlValue.

12.4.3.2 NullTransformation

Description

NullTransformation is an activity that takes any type of instance as input and returns it, doing nothing else. Parameter type is
omitted so that any type can be accepted.

12.4.4 EFFBD extensions

The following optional extensions and translations are provided for applications requiring adherence to Enhanced Functional
Flow Block Diagram conventions and semantics (see “EFFBD extensions” in section 12.1 for overview).

Figure 12-8. Control values.

Figure 12-9. Null transformation.

ControlValue
disable
enable

<<enumeration>>

«activity»
NullTransformation

NT Input : NT Output :
SysML Specification v. 0.90 (Draft) 85

12.4.4.1 Constraints

EFFBD’s place the following constraints on the use of activity diagrams:

[1] (On Activity) Activities do not have partitions.

[2] (On Activity) All decisions, merges, joins and forks are well-nested. In particular, each decision and merge are matched
one-to-one, as are forks and joins.

[3] (On Action) All actions require exactly one control edge coming into them, and exactly one control edge coming out.

[4] (On ControlFlow) All control flows into an action target a pin on the action that has isControl = true.

[5] (On Parameter) Parameters cannot be streaming or exception.

[6] (On ActivityEdge) Edges cannot have time constraints.

[7] The following SysML stereotypes cannot be applied: Rate, ControlOperator, NoBuffer, Overwrite.

12.4.4.2 Notation

 The EFFBD extension provides the following notational additions to activity diagrams to align with EFFBD. The notation
does not affect the metamodel and is interchanged with UML 2 Diagram Interchange. See Appendix C.

1. Object flow arrows have double arrowheads when they target pins corresponding to parameters with minimum multiplic-
ity greater than zero.

2. Decision and merge nodes used in cycles where the number of iterations is determined once before the first iteration are
labelled with the letters “IT” inside the node.

3. Decision and merge nodes used in cycles where the terminination of the iteration is determined by a decision node or
parameter sets in the cycle are labelled with the letters “LP” inside the node.

4. Edges coming out of forks can be annotated with the label “kill”.

Other EFFBD notation than the above is not part of the EFFBD extension. Most EFFBD notation is different in activity dia-
grams, but most of the translation is one-to-one and follows the translation of of terms.

12.5 Compliance levels
This is additional detail on the compliance levels described in section 12.2.

The following are basic:

• The EFFBD subprofile (section 12.4.4).

The following are advanced:

• Actions that are not basic or not required.

• joinSpec on JoinNode

• upperbound and state on ObjectNode

• pre/postcondition on Activity

• CentralBufferNode

• isDimension and isExternal on ActivityPartition

• ValuePin
86 SysML Specification v. 0.90 (Draft)

The following are not required:

• StructuredNode’s that are actions.

• weight on ActivityEdge

• transformation and multicase/receive on ObjectFlow

• isSingleExecution on Activity

• isException on Parameter

12.6 Usage examples
The following examples illustrate modeling continuous systems (see “Continuous systems” in section 12.1). Figure 12-10
shows a simplified model of driving and braking in a car that has an automatic braking system. Turning the key on starts two
behaviors, Driving and Braking, which are the responsibility of the Driver and Brake System respectively, as shown by parti-
tions. These behaviors execute until the key is turned off, using streaming parameters to communicate with other functions.
The Driving behavior outputs a brake pressure continuously to the Braking behavior while both are executing, as indicated by
the «continuous» rate and streaming properties (streaming is a characteristic of UML behavior parameters that supports the
input and output of items while a behavior is executing, rather than only when the behavior starts and stops). Brake pressure
information also flows to a control operator that outputs a control value to enable or disable the Monitor Traction behavior. No
control pins are used on Monitor Traction, so once it is enabled, the continuously arriving enable control values from the con-
trol operator have no effect, per UML semantics. When the brake pressure goes to zero, disable control values are emitted
from the control operator. The first one disables the monitor, and the rest have no effect. While the monitor is enabled, it out-
puts a modulation frequency for applying the brakes as detemrined by the ABS system. The rake notations on the control
SysML Specification v. 0.90 (Draft) 87

operator and Monitor Traction indicate they are further defined by activities, as shown in Figures 12-11 and 12-12. An alter-
native notation for this function decomposition is shown in Figure 12-13.

The activity diagram for Monitor Traction is shown in Figure 12-11. When Monitor Traction is enabled, it begins listening for
signals coming in from the wheel and accelerometer. A traction index is calculated every 10 ms, which is the slower of the
two signal rates. The accelerometer signals come in continuously, which means the input to Calculate Traction does not buffer

Figure 12-10. Continuous system example 1.

«interruptibleRegion»

Driving

Braking

Monitor Traction

{stream }

{stream }

{stream }

{stream }

Turn
Key To On

Key
off

Brake
Pressure

Modulation
Frequency

«controlOperator»
Enable on Brake

Pressure > 0

Operating Car

«continuous»

«continuous»
88 SysML Specification v. 0.90 (Draft)

values. The result of Calculate Traction is filtered by a decision node for a threshold value and Calculate Modulation Fre-
quency determines the output of the activity.

The activity diagram for the control operator Enable on Brake Pressure > 0 is shown in Figure 12-12. The decision node and
guards determine if the brake pressure is greater than zero, and flow is directed to value specification actions that output an
enabling or disabling control value from the activity. The edges coming out of the decision node indicate the probability of
each branch being taken.

Figure 12-13 shows a class diagram with composition associations between the activities in Figures 12-10, 12-11, and 12-12,
as an alternative way to show the functional decomposition of Figures 12-10, 12-11, and 12-12. Each instance of Operating
Car is an executon of that behavior. It owns the executions of the behaviors it invokes synchronously, such as Driving. Like

Figure 12-11. Continuous system example 2.

Figure 12-12. Continuous system example 3.

Monitor Traction
[loss of
 of traction]

Acceleration

Input from
optical
sensor
on wheel

Angular Velocity

Calculate Traction

[else]

Calculate
Modulation
Frequency

{rate = per 10ms}

«continuous»

Modulation
Frequency

{stream}

Traction
Index

Input from
accelerometer

Monitor Traction
[loss of
 of traction]

Acceleration

Input from
optical
sensor
on wheel

Angular Velocity

Calculate Traction

[else]

Calculate
Modulation
Frequency

{rate = per 10ms}

«continuous»

Modulation
Frequency

{stream}

Traction
Index

Input from
accelerometer

Monitor Traction
[loss of
 of traction]

Acceleration

Input from
optical
sensor
on wheel

Angular Velocity

Calculate Traction

[else]

Calculate
Modulation
Frequency

{rate = per 10ms}

«continuous»

Modulation
Frequency

{stream}

Traction
Index

Input from
accelerometer

Enable on Brake Pressure > 0
«controlOperator»

Brake
Pressure

ControlValue

[Brake Pressure > 0]

«ValueSpecificationAction»
enable

«ValueSpecificationAction»
disable[else]

{probability = 90%}

{probability = 10%}
SysML Specification v. 0.90 (Draft) 89

all strong composition, if an instance of Operating Car is destroyed, terminating the execution, the executions it owns are also
terminated.

Figure 12-14 shows a class diagram with composition associations between the activity in Figure 12-10 and the classes that
type the object nodes in that activity. In an instance of Operating Car, which is one execution of it, instances of Break Pressure
and Modulation Frequency are linked to the execution instance when they are in the object nodes of the activity.

Figure 12-13. Example class diagram for functional decomposition

Figure 12-14. Example class diagram for object node types

«activity»
Driving

«activity»
Braking

«activity»
Monitor Traction

«activity»
Turn

Key to On

«controlOperator»
Enable on Brake

Pressure > 0

«activity»
Calculate Traction

«activity»
Calculate

Modulation
Frequency

«activity»
Operating Car

enableOnBrakePressure>0
[0..1]

calculateTraction
[0..1]

calculateModulationFrequency
[0..1]

oc
[0..1]

oc
[1..1]

oc
[0..1] oc

[1..1]

oc
[1..1]

monitorTraction
 [0..1]

driving
[0..1]

turnKeyOn
[0..1]

mt
[1..1] mt

[1..1]

braking
[0..1]

«activity»

Operating Car

oc
[1..1]

oc
[1..1]

mf
 [0..1] bp

[0..1]

«class»

BreakPressure

«classs»

ModulationFrequency
90 SysML Specification v. 0.90 (Draft)

13 Interactions

13.1 Overview
The SysML interaction diagrams include the sequence diagram and timing diagram, and are unchanged from UML 2, except
for some minor notational enhancements to timing diagrams. The UML 2 communication diagrams and interaction overview
diagram are not part of SysML. The following is a brief overview of each diagram type.

Sequence diagram

The sequence diagram specifies a series of interactions in terms of control flow. The control flow is defined by sending
and receiving messages between lifelines. A message combines control and dataflow. It initiates behavior in the object receiv-
ing the message and passes inputs to the behavior. The time ordering of the messages is associated with the vertical placement
of the message on the diagram. Complex sequences are abstracted into a reference sequence diagram. Conditional logic can
be included to represent alternative, sequential flows, and loops. Gates provide interaction points with external lifelines. Life-
lines can be decomposed into their constituent parts.

Interaction overview diagram

The interaction overview diagram represents a sequence of interactions, including logic to describe alternative or concur-
rent interactions. It is not part of SysML at this time. However, an interaction overview diagram can be approximated by a
constrained use of an activity diagram where an action invokes an interaction versus an activity.

Timing diagram

The Timing diagram represents the change over time associated with changes in states, activities, or property values. The
Timing diagram is a 2-dimensional graph that represents time on one axis, and state, activity, and or property along the other
axis. The timing diagram can also represent the time ordering of events and/or the time that an expression evaluates to true.
The graph depicts the event or change in the state, activity, property value (or expression value) over time. The property values
can be either discrete or continuous.

13.2 Diagram elements
The graphic nodes that can be included in structural diagrams are shown in Table 14.

Table 14 - Graphic nodes included in sequence diagrams

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Frame The notation shows a rectangular
frame around the diagram with a
name in a compartment in the
upper left corner. See “Interaction
(from BasicInteraction, Frag-
ments)” on page 419.

Basic

seq EventOccurrence
SysML Specification v. 0.90 (Draft) 91

Lifeline See “Lifeline (from BasicInterac-
tions, Fragments)” on page 427

Basic

ExecutionOccurrence See “CombinedFragment (from
Fragments)” on page 409. See also
“Lifeline (from BasicInteractions,
Fragments)” on page 427 and
“ExecutionOccurrence (from Basi-
cInteractions)” on page 417

Basic

InteractionOccurrence See “InteractionOccurrence (from
Fragments)” on page 423.

Basic

CombinedFragment See “CombinedFragment (from
Fragments)” on page 409

Basic

StateInvariant /
Continuations

See “Continuation (from Frag-
ments)” on page 414 and “StateIn-
variant (from BasicInteractions)”
on page 433

Advanced

Table 14 - Graphic nodes included in sequence diagrams

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

:Lifeline

ob2:C2

Nref

alt

:Y

p==15
92 SysML Specification v. 0.90 (Draft)

Coregion See explanation under parallel in
“CombinedFragment (from Frag-
ments)” on page 409

Advanced

Stop See Figure 333 Basic

Duration Constraint
Duration Observation

See Figure 347 Basic

Time Constraint
Time Observation

See Figure 347 Basic

Table 14 - Graphic nodes included in sequence diagrams

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

s[u]:B

m3

m2

:User

Code d=duration

CardOut {0..13}

OK

{d..3*d}

CardOut {0..13}

OK
t=now

{t..t+3}
SysML Specification v. 0.90 (Draft) 93

The graphic paths between the graphic nodes are given in Table 15.

Table 15 - Graphic paths included in sequence diagrams

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Message Messages come in different vari-
ants depending on what kind of
Message they convey. Here we
show an asynchronous message, a
call and a reply. These are all com-
plete messages. See “Message
(from BasicInteractions)” on
page 428.

Basic

Lost Message Lost messages are messages with
known sender, but the reception of
the message does not happen. See
“Message (from BasicInterac-
tions)” on page 428

Advanced

Found Message Found messages are messages with
known receiver, but the sending of
the message is not described
within the specification. See “Mes-
sage (from BasicInteractions)” on
page 428

Advanced

GeneralOrdering See “GeneralOrdering (from Basi-
cInteractions)” on page 418

Advanced

Code

doit(z)

lost

found
94 SysML Specification v. 0.90 (Draft)

13.3 Package structure

13.4 UML extensions
No UML extensions in this section.

13.5 Compliance levels

Figure 13-1. Package structure for SysML interactions.

UML::Interactions

SysML::Interactions

«import»
SysML Specification v. 0.90 (Draft) 95

13.6 Usage examples

Figure 13-2. Simple Interaction Diagram

Figure 13-3. Interaction Diagram using an interactionOccurance

seq N

m3

m3

s[k]:Bs[u]:B

seq M

m1
m2

s[u]:Bs[k]:B:r

ref N
m3
96 SysML Specification v. 0.90 (Draft)

Sample interaction overview diagram for “Drive Vehicle” depicts the the top level flow of control. This diagram is a
restricted use of an activity diagram where the actions can invoke an interaction occurence as well as an activity.

Figure 13-4. Interaction Overview Diagram for “Drive Vehicle”

iod:DriveVehicle

[accessory selected]

Monitor Vehicle
& Environment

Ref

Start Vehicle

Ref

Control Vehicle
Accessories

Ref

Control Vehicle
Speed

Ref

Control Vehicle
Direction

Ref

Turn-off
Vehicle

Ref
SysML Specification v. 0.90 (Draft) 97

Sample interaction overview diagram for “Start Vehicle” depicts the behavior which was referenced in the higher
level interaction overview diagram in Figure 13-4. This diagram references more detailed behaviors.

Figure 13-5. Interaction Overview Diagram for “Start Vehicle”

Ignition on

Display Faults

[else]

[fault detected] Ref

Test Vehicle

Ref

Start Engine

Ref

Initialize Engine

Ref

iod: Start Vehicle
98 SysML Specification v. 0.90 (Draft)

Sample timing diagram for the “Vehicle Performance Timeline” depicts the vehicle speed as a function of time.

Figure 13-6. Timing Diagram for the “Vehicle Performance Timeline”

Tr
an

sm
is

si
on

St
at

e

Vehicle
Speed
(mph)

Gear 1

Neutral

10
20
30
40
50
60
70
80

Time (seconds)
1 2 3 4 5 6 7 8 9 10

Requirement

X

Estimated
Performance

Gear 2

Gear 3

Gear 4

Alternative =
V6

tim:VehiclePerformanceTimeline
SysML Specification v. 0.90 (Draft) 99

100 SysML Specification v. 0.90 (Draft)

14 State Machines

14.1 Overview
The StateMachine package defines a set of concepts that can be used for modeling discrete behavior through finite state-transi-
tion systems. The state machine represents behavior as the state history of an object in terms of its transitions and states. The
activities that are invoked during the transition, entry, and exit of the states are specified along with the associated event and
guard conditions. Activities that are invoked while in the state are specified as "do Activities", and can be either continuous or
discrete. A composite state has nested states that can be sequential or concurrent.

In addition to expressing the behavior of a part of the system, state machines can also be used to express the usage proto-
col of part of a system. The two kinds of UML state machines are referred to as behavioral state machines and protocol state
machines. Protocol state machines are not included as part of SysML.

14.2 Diagram elements
The concrete syntax for state machine diagrams is included in the following Tables and is unchanged from UML 2. This table
outlines the graphic elements that may be shown in state machine diagrams, and provides cross references where detailed
information about the semantics and concrete notation for each element can be found.

The graphic nodes that can be included in state machine diagrams are shown in Table 16.

Table 16: Graphic nodes included in state machine diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX
REFERANCE COMPLIANCE

Choice pseudo
state

UML::ChoicePoint pseudostate. Basic

Composite state UML::State Basic

Entry point UML::EntryPoint pseudostate Basic

[Id>10]

d<=10]

S

Sb1 Sb3

Sb2

againagain
SysML Specification v. 0.90 (Draft) 101

Exit point UML::ExitPoint pseudostate Basic

Final state UML::FinalState pseudostate Basic

History, Shallow
pseudo state

UML::ShallowHistory pseu-
dostate

Basic

Initial pseudo
state

UML::Initial pseudostate Basic

Junction pseudo
state

UML::Junction pseudostate Basic

Region UML::Region pseudostate Basic

Simple state UML::State Basic

Table 16: Graphic nodes included in state machine diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX
REFERANCE COMPLIANCE

abortedabortedabortedaborted

H

S

S

102 SysML Specification v. 0.90 (Draft)

The graphic paths that can be included in state machine diagrams are shown in Table 17.

State Machine UML::Statemachine Basic

Terminate node UML::TerminateNode Basic

Submachine state UML::State Basic

Table 17: Graphic paths included in state machine diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX
REFERANCE COMPLIANCE

Transition Transition Basic

Table 16: Graphic nodes included in state machine diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX
REFERANCE COMPLIANCE

ReadAmountSM

aborted

R e a d A m o u n t :
R e a d A m o u n tS M a b o r te da b o r te d

R e a d A m o u n t :
R e a d A m o u n tS M a b o r te da b o r te d

e[g]/ ae[g]/ a
SysML Specification v. 0.90 (Draft) 103

14.3 Package structure

14.4 UML extensions
No UML extensions in this section

14.5 Compliance levels
The compliance level for the Statechart section is assigned to the basic compliance level.

14.6 Usage examples
The following are examples of state machine diagrams.

Figure 14-1. Package structure for SysML state machines.

Figure 14-2. State machine with exit point definition.

ReadAmountSM

selectAmount

enterAmount
ok

abort

otherAmount

amount

abort

selectAmount

ok

otherAmount

amount

abort

aborted

ReadAmountSM

selectAmount

enterAmount
ok

abort

otherAmount

amount

abort

selectAmount

ok

otherAmount

amount

abort

aborted

selectAmount

enterAmount
ok

abort

otherAmount

amount

abort

selectAmount

ok

otherAmount

amount

abort

aborted
104 SysML Specification v. 0.90 (Draft)

Figure 14-3. SubmachineState with usage of exit point.

VerifyCard

acceptCard

ReleaseCardVerifyTransaction

OutOfService

outOfService

VerifyCard

acceptCard

ReleaseCardVerifyTransaction
releaseCard

OutOfService

outOfService

ReadAmount :
ReadAmountSM abortedaborted

ATM

VerifyCard

acceptCard

ReleaseCardVerifyTransaction

OutOfService

outOfService

VerifyCard

acceptCard

ReleaseCardVerifyTransaction
releaseCard

OutOfService

outOfService

ReadAmount :
ReadAmountSM abortedaborted

ReadAmount :
ReadAmountSM abortedaborted

ATM
SysML Specification v. 0.90 (Draft) 105

O n Ho o k

O f fHo o k

T e le p h o n e

L in e

In act ive

A c t ive

Dia lin g

C o n n e c te d

Bu s y

d is co n n e c t

ab o r t

e vBu s y

co n n e c t

1
1

ac t iva te

p ick u p /
m yL in e ->G EN(ac t iva te)

h an g u p /
m yL in e ->G EN(ab o r t)
106 SysML Specification v. 0.90 (Draft)

15 Use Cases

15.1 Overview
The use case diagram describes the usage of a system (subject) by its actors (environment) to achieve a goal, that is realized by
the subject providing a set of services to selected actors. The use case can also be viewed as functionality and/or capabilities
that is accomplished through the interaction between the subject and its actors. Use case diagrams include the use case and
actors and the associated communications between them. Actors represent classifier roles that are external to the system that
may correspond to users, systems, and or other environmental entities. They may interact either directly or indirectly with the
system. The actors are often specialized to represent a taxonomy of user types or external systems.

The use case diagram is a method for describing the usages of the system. The association between the actors and the use
case represent the communications that occurs between the actors and the subject to accomplish the functionality associated
with the use case. The subject of the use case can be represented via a system boundary. The use cases that are enclosed in the
system boundary represent functionality that is realized by behaviors such as activity diagrams, sequence diagrams, and state
machine diagrams.

The use case relationships are "include", "extend", and "generalization". The "include" relationship provides a mechanism
for factoring out common functionality which is shared among multiple use cases, and is always performed as part of the base
use case. The "extend" relationship provides optional functionality, which extends the base use case at defined extension
points under specified conditions. The "generalization" relationship provides a mechanism to specify variants of the base use
case.

The use cases are often organized into packages with the corresponding dependencies between the use cases in the pack-
ages.

There are currently no changes to UML use cases.

15.2 Diagram elements
Graphical nodes that can be included in use case diagrams are shown in Table 18.

Table 18. Graphical nodes included in Use Case diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Use Case UML::UseCase Basic

Actor UML::UseCase Basic

UseCaseName

<<actor>>
systemName
SysML Specification v. 0.90 (Draft) 107

 Graphical paths that can be included in use case diagrams are shown in .Table 19.

Subject Role name on Classifier Basic

Table 19. Graphical nodes included in Use Case diagrams.

PATH TYPE CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Communica-
tions path

UML::Association Basic

Include Subclass of UML::Directed
Relationship

Basic

Extend Subclass of UML::Directed
Relationship

Basic

Table 18. Graphical nodes included in Use Case diagrams.

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

SubjectName

<<include>>

<<extend>>
108 SysML Specification v. 0.90 (Draft)

15.3 Package structure

15.4 UML extensions

15.5 Compliance levels

15.6 Usage examples

Figure 15-1. Package structure for SysML Use Cases.

UML::UseCases

SysML::UseCases

«import»

package ATMtopPkg

Customer

Administrator

«system»
ATMsystem

Bank

Withdraw

Transfer Funds

Deposit
Money

Register ATM
at Bank

Read Log

0..1
1

0..11

0..1

1

0..11

0..1

1

0..*

1

0..*

1

SysML Specification v. 0.90 (Draft) 109

110 SysML Specification v. 0.90 (Draft)

Part IV - Crosscutting Constructs
This Part specifies generic constructs that apply to both structure and behavior. It includes Allocations, Requirements, and
Auxiliary Constructs. The Allocations chapter defines constructs that can be used to allocate a set of model elements to
another (e.g., deploying software artifacts to hardware nodes). The Requirements chapter specifies constructs for system
requirements and their relationships. The Auxiliary Constructs chapter specifies constructs for models and views, item flows
between parts, and quantities in terms of units, values, and dimensions.
SysML Specification v. 0.90 (Draft) 111

112 SysML Specification v. 0.90 (Draft)

16 Requirements

16.1 Overview
A requirement states a capability or condition that a system must satisfy. Arequirement may specify a function that a system
must perform or a performance condition a system must satisfy. SysML provides modeling constructs to represent require-
ments and relate them to other modeling elements.

A requirement can be decomposed into subrequirements, so that multiple requirements can be organized as a tree of com-
pound requirements. Requirements can be related to each other, as well as to analysis, design, implementation and testing ele-
ments. A requirement can be generated or deduced from another requirement using the «derive» relationship. A requirement
can be fulfilled by other model elements using the «satisfy» relationship. A requirement can be verified by test cases using the
«verify» relationship. All of these are specializations of the UML «trace» relationship, which is used to track requirements and
changes across models.

Modelers can customize requirements taxonomies by defining additional subtypes of the SysML «requirement» stereo-
type. For example, a modeler may want to define the following subtypes of «requirement»: OperationalRequirement, Func-
tionalRequirement, InterfaceRequirement, PerformanceRequirement, etc. Specialized requirements may restrict the types of
model elements that may be assigned to satisfy the requirement. For example, a PerformanceRequirement may require a para-
metric relation along with an associated tolerance and probability distribution on the properties that satisfy the requirement.

A requirement can define its own properties, thereby providing a computable value to accompany the textual statement of
the requirement. Initial values for properties can be assigned to requirements, and are inherited by specialized requirements.
SysML Specification v. 0.90 (Draft) 113

16.2 Diagram elements

Table 20. Graphical nodes included in Requirement diagrams

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Requirement SysML::«requirement» Basic

Rationale SysML::«rationale» Basic

TestCase SysML::«testCase» Basic

Table 21. Graphical paths included in Requirement diagrams

PATH TYPE CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Namespace
containment
relationship

UML::Kernel::Class::nested-
Classifier

Basic

Derive SysML::«derive» Basic

Satisfy SysML::«satisfy» Basic

«requirement »
Requirem ent

nam e

PropertyName : PropertyType

« requirement »
text : String
id : String

«rationale»
Why?

«testCase »
TestCaseName

«requirement »
Parent Requirement

«requirement »
Child Requirement

«requirement »
Child Requirement

«derive»

«satisfy»
114 SysML Specification v. 0.90 (Draft)

16.3 Package structure

Figure 16-2. Package structure for SysML Requirement.

16.4 UML extensions

16.4.1 Stereotypes

Verify SysML::«verify» Basic

Trace UML::«trace» Basic

Table 21. Graphical paths included in Requirement diagrams

PATH TYPE CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

«verify»

«trace»

UML::Kernel

SysML::Requirements
SysML Specification v. 0.90 (Draft) 115

Abstract syntax

Package Requirement

Figure 16-3. Abstract Syntax for Requirements Metamodel.

16.4.1.1 Derive

Description

A dependency relationship between two requirements in which a client requirement can be generated or inferred from the sup-
plier requirements or additional design information. For example, an analysis requirement may derive from a business need, or

«stereotype»
UML::Trace

«stereotype»
Satisfy

«stereotype»
Verify

«stereotype»
Derive

<<stereotype>>
TestCase

«metaclass»
UML:Comment

<<stereotype>>
Rationale

«metaclass»
Operation

«metaclass»
Behavior

«metaclass»
Class

«stereotype»
Requirement

text : String
id : String
116 SysML Specification v. 0.90 (Draft)

a design requirement in turn may derive from an analysis requirement. Derived requirements may refine or restate a require-
ment to improve stakeholder communications or to track design evolution. As with other dependencies, the arrow direction
points from the derived (client) requirement to the (supplier) requirement from which it is derived.

Constraints

[1] The supplier must be an element stereotyped by «requirement».

[2] The client must be an element stereotyped by «requirement».

Editorial Comment: Since Rationale applies to all model elements, it should be migrated to Classes or Auxiliary
Elements.

16.4.1.2 Rationale

Description

An element that documents the principles or reasons for a modeling decision, such as an analysis choice or a design selection.
It provides or references the basis for the modeling decision, and can be attached to any model element.

16.4.1.3 Requirement

Description

A requirement states a capability or condition that a system must satisfy. A requirement may specify a function that a system
must perform or a performance condition that a system must satisfy. Requirements are used to establish a contract between the
customer (or other stakeholder) and those responsible for designing and implementing the system.

A requirement is a stereotype of UML::Kernel::Class. Compound requirements can be created by using the nesting capa-
bility of the class definition mechanism. The default interpretation of a compound requirement, unless stated differently by the
compound requirement itself, is that all its subrequirements must be satisfied for the compound requirement to be satisfied.
Subrequirements can be accessed through the nestedClassifier property of a class. When a requirement has nested require-
ments, all the nested requirements apply as part of the container requirement. Deleting the container requirement deleted the
nested requirements, a functionality inherited from UML.

Attributes

text : String The textual representation or a reference to the textual representation of the requirement.

id :String The unique id of the requirement.

Constraints

[1] The property isAbstract must be set to true.

[2] The property ownedOperation must be empty.

[3] Classes stereotyped by «requirement» may not participate in associations.

[4] The subtypes of a class stereotyped by «requirement» must also be stereotyped by «requirement».

[5] A class stereotyped by «requirement» can participate in a «trace» dependency only if the other end of the dependency is
not stereotyped by «requirement».

[6] A subtype of a class stereotyped by «requirement» must also be a requirement.

[7] A nested classifier of a class stereotyped by «requirement» must also be a requirement.
SysML Specification v. 0.90 (Draft) 117

16.4.1.4 Satisfy

Description

A dependency relationship between a requirement and a model element that fulfills the requirement. As with other dependen-
cies, the arrow direction points from the satisfying (client) model element to the (supplier) requirement that is satisfied.

Constraints

[1] The supplier must be an element stereotyped by «requirement».

16.4.1.5 Verify

Description

A relationship between a requirement and a test case that can determine whether a system fulfills the requirement. As with
other dependencies, the arrow direction points from the (client) test case to the (supplier) requirement.

Constraints

[1] The supplier must be an element stereotyped by «requirement».

[1] The client must be an element stereotyped by «testCase».

16.4.1.6 TestCase

Description

A process or activity that is used to determine whether a system has fulfilled its requirements.

16.5 Compliance levels
The compliance levels are specified by the tables in Section 18.2.

16.6 Usage examples
All the examples in this chapter are based on a set of publicly available (on-line) requirement specification from the National
Highway Traffic Safety Administration (NHTSA.) Excerpts of the original requirement text used to create the models are
118 SysML Specification v. 0.90 (Draft)

shown in Figure 16-5. The name and ID of these requirements are referred to in the SysML usage examples that follow. See
NHTSA specification 49CFR571.135 for the complete text from which these examples are taken.

Figure 16-4. Source requirements from NHTSA specification 49CFR571.135.

16.6.1 Requirement decomposition

The diagram in Figure 16-5 shows an example of a compound requirement decomposed into multiple subrequirements.

Figure 16-5. Decomposition of a compound requirement.

S6.2.1 Pavement friction
T he road test surface produces a peak friction
coefficient (PFC) of 0.9 when measured using
an American Society for T est ing and Materials
(AST M) E1136 standard reference test t ire,
in accordance with AST M Method E 1337–90,
...

ASTM R1337-90 Std tire test method
T his test method covers the measurement of
peak braking coefficient of paved surfaces using
a standard reference test t ire (SRT T) as described
in Specificat ion E1136 that represents current
technology passenger car radial t ies.

S7.4.3 Test and procedure conditions
(a) IBT : � 65 �C (149 �F), �100 �C (212 �F).
…
(f) T est surface: PFC of at least 0.9.
…

S5.4.1. Master Cylinder Reservoir
A master cylinder shall have a reservoir
compartment for each service brake
subsystem serviced by the master cylinder.
Loss of fluid from one compartment
shall not result in a complete loss of
brake fluid from another compartment .

S7.1 Burnish

….
(a) IBT : 100 �C (212 �F).
(b) T est speed: 80 km/h (49.7 mph).
(c) Pedal force: Adjust as necessary
to maintain specified constant decelerat ion
rate
…..

req Requirements Hierarchy

«requirement»
Master Cylinder Reservoir

«requirement»
Loss of fluid

«requirement»
Reservoir

Text =Prevent complete loss of fluid”
ID = S5.4.1a

Text = "Separate reservoir compatment”
ID = S5.4.1b

Text =”A master cylinder shall have a...”
ID = S5.4.1
SysML Specification v. 0.90 (Draft) 119

16.6.2 Requirements and design elements

The diagram in Figure 16-6 shows how traceability links between requirements and design—the «satisfy» relationship—
can be shown.The design decision is further documented using a Rationale comment attached to the link..

Figure 16-6. Links between requirements and design.

req Master Cylinder

«requirement »
Master Cylinder Reservoir

« requirement »
Loss of f luid

«requirement »
Reservoir

«assembly»
Brake System

m : MasterCylinder

l1: BrakeLine l2: BrakeLine

r: RearBrakef: FrontBrake
<<satisfy>>

Decelerate Car

driver

Car function

<<trace>>

<<satisfy>>

«rationale »
body = “This design of the brake
assembly satisf ies the federal safety
requirements.”

<<satisfy>>

Text =Prevent complete loss of f luid”
ID = S5.4.1a

Text = "Separate reservoir compatmenr”
ID = S5.4.1b

Text =”A master cylinder shall have a...”
ID = S5.4.1

«rationale »
body = “The best-practice solution consists in
using a set of springs and pistons to conf ine
the loss to a single compartment”

«rationale »
body = “The best-practice solution
consists in assigning one reservoir per
brakeline.”
120 SysML Specification v. 0.90 (Draft)

16.6.3 Verification procedure (Test Case)

The example diagram in Figure 16-7 shows how a complex test case, in this example a performance test for a passenger-
car brake system, given as a set of steps in text form (see part of the procedure text at the upper right-handside corner of the
figure), can be described using another type of diagram representation. The peformance test, modeled as a Test Case is linked
to a requirement using the «verify»» relationship. Note that the modeling of test case can also be addressed using the UML
Testing Profile, available from the Object Management Group.

Figure 16-7. Linkage of a Test Case to a requirement.

req burnish

«requirement »
NHTSASafetyRequirements

[Speed=80]

Initial
condition

[count < 200]

[count=200]

Adjust
brake

Accelerate Maintain

Brake

[IBT=100 or
d >= 2 km]

<<verify>>

sm Burnish test « testCase»

«requirement »
Burnish

Text =”..”
ID = 157.135

Text =”(a) IBT…"
ID = S7.1
SysML Specification v. 0.90 (Draft) 121

16.6.4 Requirement specialization and properties

The diagram in Figure 16-8 shows how to specialize a requirement and specify properties. A requirements for radar tracking
is defined with properties some of which have initial values. It is specialized for the two modes of of air tracking, with differ-
ent maximum diostances in each case.

Figure 16-8. Specializing requirements and propertied requirements.

«requirement »
Radar Air Tracking Requirement

Simultaneous : Integer
Quality : String
CounterMeasure : String [*]
Error : Quantity
MaxDistance : Quantity
CrossSection : Quantity = 100

«requirement »
SWT Mode 1 Requirement

«assembly »
Design 321

<<satisfy>>

«requirement »
SWT Mode 2 Requirement

<<satisfy>>

MaxDistance : Quantity = 100km
MaxDistance : Quantity = 150km
122 SysML Specification v. 0.90 (Draft)

17 Allocations

17.1 Overview
Allocation is the term used by systems engineers to denote the organized cross-association of elements within the various

structures or hierarchies of a user model. The systems engineer's concept of "allocation" requires a flexibility of expression
suitable for abstract system specification, rather than a particular constrained method of system or software design. When
searching for system organizational concepts, systems engineers are often required to associate various elements in a user
model in abstract, preliminary, and sometimes tentative ways. It is inappropriate to force the systems engineer into the detail of
rigorous methods too early in the development of a system architecture or design. The application of rigorous methods will
surely follow, once the organizational concepts are more fully expressed. In the meantime, it is important and appropriate for
systems engineers to use the notion of allocation to assess just how well a developing user model "hangs together".

The various types of elements generally associated with one another in practice have given rise to various uses of the word
"allocation". This chapter does not try to limit the use of the term "allocation", but to provide a basic capability to support allo-
cation in the broadest sense. See Appendix E for a brief overview of the types of allocations specifically considered in the
development of the SysML language. This chapter focuses on the syntax with which these types of allocations may be
expressed in a SysML model.
SysML Specification v. 0.90 (Draft) 123

17.2 Diagram elements

Table 22. Graphical nodes included in allocation diagrams

NODE TYPE CONCRETE SYNTAX ABSTRACT SYNTAX COMPLIANCE

Allocation derived
properties displayed in
compartment of Class.

SysML::Allocation::Allocated Basic

Allocation derived
properties displayed in
Comment.

SysML::Allocation::Allocated Basic

Allocation derived
properties displayed in
compartment of Part
on Assemby Diagram.

SysML::Allocation::Allocated Advanced

Allocation derived
properties displayed in
compartment of
Action on Activity
Diagram.

SysML::Allocation::Allocated Advanced

Allocation Activity
Partition

SysML::Allocation::Allocated Advanced

«allocated»
{allocatedFrom= ElementName}
{allocatedTo= ElementName}

ClassName

ElementName

«allocated»
{allocatedFrom= ElementName}
{allocatedTo= ElementName}

«assembly»
ClassName

«allocated»
{allocatedFrom=
ElementName}

PartName

«allocated»
{allocatedTo=

ElementName}

ActivityName

«allocated»
:ElementName

ActivityName
124 SysML Specification v. 0.90 (Draft)

Tabular representations

Allocations can also be represented in tabular format. See section 16.6 Usage Examples for an example of a tabular represen-
tation of allocation.

17.3 Package structure

Figure 17-1. Package Structure for SysML Allocation

17.4 UML extensions

17.4.1 Stereotypes

Abstract syntax

Table 23. Graphical paths included in allocation diagrams

PATH TYPE CONCRETE SYNTAX ABSTRACT SYNTAX COMPLIANCE

Allocation (general) SysML::Allocation::Allocated Basic

Allocation (one to
many)

SysML::Allocation::Allocated Basic

«allocation»

Named
Element

Named
Element

Named
Element

«allocation»

UML::Dependencies

SysML::Allocation

UML::Intermediate
ActivitiesUML::Kernel
SysML Specification v. 0.90 (Draft) 125

Package Allocation

Figure 17-2. Stereotypse for Allocation (Basic)

Figure 17-3. Allocation Activity Partition (Advanced)

17.4.1.1 Allocation

Description

Allocation is a mecanism for associating elements of different types, or in different hierarchies, at an abstract level. Allocation
is used for assessing user model consistency and directing future design activity. It is expected that an «allocation» relation-
ship between model elements is a precursor to a more concrete relationship between the elements, their properties, operations,
attributes, or sub-classes.

Allocation is a stereotype of a dependency permissable between any two NamedElements. It is directional - one NamedEle-
ment must be designated client, and at least one NamedElement must be designated supplier.

Per systems engineering convention, the arrowhead end of the «allocation» dependency must be the element “allocated
to”. This makes «allocation» an unconventional dependency, in that the client is the more abstract element. This is appropri-
ate for the system engineering domain, and is allowed in UML2 (Superstructure Specification section 7.3.12). The supplier
(arrowhead end of the dependency) can thus be viewed as “supplying” concreteness to the client in an unspecified way.

The «allocation» dependency may be further subtyped by the user with particular constraints regarding element type and
attributes (see Appendix E for examples of «allocation» dependency subtypes).

Attributes

An «allocation» dependency may be named or numbered for traceability purposes.

«stereotype»
Allocation

UML::Dependencies::Usage
UML::Kernel::

NamedElement

/allocatedFrom:NamedElement
/allocatedTo:NamedElement

«stereotype»
Allocated

UML::IntermediateActivities::
ActivityPartition

«stereotype»
AllocatedActivityPartition
126 SysML Specification v. 0.90 (Draft)

Constraints

A single «allocation» dependency shall have only one client (no arrowhead), but may have one or many suppliers (arrow-
head).

Subtypes of the «allocation» dependency should have constraints applied to supplier and client as appropriate. See Usage
Examples section for examples.

17.4.1.2 Allocated

Description

Allocated applies to model elements that have at least one allocation relationship with another model element. Allocated
elements may be either supplier or client of an «allocation» dependency.

The «allocated» stereotype provides a mechanism for a particular model element to conveniently retain and display the
element at the opposite end of any «allocation» dependency. This stereotype provides for the properties “allocatedFrom” and
“allocatedTo”, which are derived from the «allocation» dependency.

Attributes

The following properties are derived from any «allocation» dependency:

/allocatedTo – the set of elements that are suppliers of an «allocation» whose client is extended by this stereotype
(instance). This property is the union of all clients to which this instance is the supplier, i.e. there is only one /allocatedTo
property per allocated model element.

/allocatedFrom – reverse of allocatedTo: the set of elements that are clients of an «allocation» whose supplier is extended
by this stereotype (instance). The same characteristics apply as to /allocatedTo.

Note that the supplier or client may be an element (e.g. Activity, Class), or it may be a property (e.g. Action, Part, Connec-
tor). For this reason, it is important to use compound element names when deriving /allocatedFrom and /allocatedTo proper-
ties. An example of a compound element name is the form (PackageName::ElementName.PropertyName). Use of such
compound names makes it clear that the «allocation» is refering to the definition of the element, or to it’s specific usage as a
property of another element.

17.4.1.3 AllocatedActivityPartition

Description

AllocatedActivityPartition is used to depict an «allocation» relationship on an Activity diagram. The AllocatedActivityParti-
tion is a standard UML2::ActivityPartition, with modified constraints such that any Actions within the partition must result in
an «allocation» dependency between the Activity used by the Action, and the Classifier typing the partition.

Attributes

Same as UML2::ActivityPartition

Constraints

An Action appearing in an «AllocatedActivityPartition» will be the client of an «allocation» dependency. The Classifier
typing the «AllocatedActivityPartition» will be the supplier of the «allocation» dependency.

17.4.2 Diagram extensions
SysML Specification v. 0.90 (Draft) 127

An «allocation» relationship is represented diagrammatically by dependency. If an allocation has been subtyped (e.g.
functionalAllocation), then only the subtype will be displayed in guillemets on the allocation dependency in the diagram (e.g.
«functionalAllocation»).

 The properties /allocatedFrom and /allocatedTo may be displayed in a compartment, or in a comment. In both cases, curly
braces {} are used to express the property, and the ElementType is expressed in guillemets prior to the ElementName, as listed
below:

{allocatedFrom= «Stereotype» ElementName}

{allocatedTo= «Stereotype» ElementName}

Use of «Stereotype» is optional. ElementName should be of the compound form (PackageName::ElementName.Proper-
tyName) as necessary to distinguish the supplier/client as being an element or a property.

When applied to a classifier, an additional compartment is used by the «allocated» stereotype. This compartment is used
specifically for display of allocatedFrom and allocatedTo properties, as described above. The allocation compartment may be
elided from the diagram. Basic compliance requires the allocation compartment for Classes only. Advanced compliance
requires the allocation compartment for Actions and Parts.

A comment may be used with any NamedElement. When used, the stereotype «allocated» will be used to distinguish the
it from a constraint. Comments may be used on associations, including ActivityEdges and Connectors. (Basic compliance)

«AllocatedActivityPartition» is identified by the word allocation in guillemets («allocated») at the top of the name com-
partment of the partition.

17.5 Compliance levels
The basic compliance level includes all features necessary for use and display of Allocation dependencies.

The advanced compliance level includes graphical features providing a more intuitive or compact representation. Com-
partments on Actions in Activity Diagrams, and Parts in Assembly Diagrams fall into this category.

17.6 Usage examples
The following examples are provided as an overview for representing allocation in SysML diagrams. More complete exam-
ples describing the systems engineering use of allocation may be found in Appendix E Usages.

17.6.1 Allocations of Actions, Parts, and Classes

The following example depicts allocation relationships as property callout boxes (basic), property compartment of a Class
(basic), and property compartments of Activities and Parts (advanced).
128 SysML Specification v. 0.90 (Draft)

Figure 17-4. Allocation on Actions, Parts, Classes

17.6.2 Flow Allocations

The following example shows ObjectFlow allocation to a Connector, or alternatively to an ItemFlow. Allocation of
ControlFlow is not shown as an example, but it is not prohibited in SysML. Independent of the ObjectFlow allocation, it may
be valuable to allocate the corresponding ObjectNode to an ItemProperty associated with the ItemFlow.

Figure 17-5. Example of Allocation from ObjectFlow to Connector

Activity6

«allocated»
{allocatedFrom= Element2}

{allocatedTo= Element3}

Class1

«assembly»
Class4

«allocated»
{allocatedFrom=

Activity6}

Part5

«allocated»
{allocatedTo= Class4.Part5}

«allocated»
{allocatedTo=
Class4.Part5}

Activity6

Class1

«allocated»
{allocatedFrom= Element2}
{allocatedTo= Element3}

«assembly»
Class4

Part5

 {allocatedFrom=
Activity6}

ObjectFlow3
Action1 Action2

«allocated»
{allocatedTo=
Connector8}

«assembly»
Class5

Part6

Part7

«allocated»
{allocatedFrom=
ObjectFlow3}

Connector8
SysML Specification v. 0.90 (Draft) 129

Figure 17-6. Example of Allocation from ObjectFlow to ItemFlow

Figure 17-7. Example of Allocation from ObjectNode to ItemProperty

17.6.3 Tabular Representation

The table below is provided as a generic example of how the «allocation» dependency may be depicted in tabular form. ID
refers to a unique number for each «allocation» dependency. AllocatedFrom is the client of the «allocation» dependency, and
AloocatedTo is the supplier. Both ElementType and ElementName for client and supplier appear in the table.

Allocation Type is a user-defined subtype of allocation. See Appendix E for a discussion of possible Allocation Types, and
more specific example of a tabular representation of allocation.

Table 24 Example Allocation Table

ID Allocation Type
(User Extension)

ElementType
AllocatedFrom

ElementName
AllocatedFrom

ElementType
AllocatedTo

ElementName
AllocatedTo

1 AllocationType1 ElementType1 ElementName1 ElementType2 ElementName2

2 AllocationType2 ElementType3 ElementName3 ElementType4 ElementName4

ObjectFlow3
Action1 Action2

«allocated»
{allocatedTo=
ItemFlow9}

«assembly»
Class5

Part6

Part7

«allocated»
{allocatedFrom=
ObjectFlow3}

ItemFlow9

Action1 Action2

{allocatedTo= Part10}

ObjectNode4

«assembly»
Class5

Part6

Part7

«allocated»
{allocatedFrom=

ObjectNode4}

Part10

«itemProperty»
130 SysML Specification v. 0.90 (Draft)

18 AuxiliaryConstructs

Editorial Comment: Auxiliary Constructs contains a mix of crosscutting constructs that are being refined and tested
for usability.

18.1 Overview
This chapter defines elements and notations for item flows, model reference data, views and viewpoints, additional data types,
dimensioned quantities, probability distributions, and property value constraints.

Input and output (I/O) items represent generic definition of things that flow and may include mass or energy flow as well
as signals that contain information. Item flows represent the flow of an item between parts in the context of an enclosing
assembly. Item flows are typed by the item which may have properties, and may be decomposed and specialized. The items
and item flows are different from UML InformationItems and InformationFlows to accomodate the ability to allocate the items
that type an item flow with the same item that types an object node in an activity diagram. Thus, the type of the output from an
activity can be directly related to the type of the flow between parts. In addition, this approach enables the properties of items
that flow to be used in parametric relationships.

SysML refines the UML concepts of viewpoints and views and adds notation to show views with a list of stakeholders and
their concerns.

SysML adds real and complex numeric types to the Integer, Boolean, Enumerated, and String data types already defined
by UML. Vector and compound structures can be modeled with standard the multiplicity elements of UML 2.

A model library declares classes that a user model may use to express quantities and distributions. A quantity is a subclass
of primitive type real and references a a unit and a dimension.

18.2 Diagram elements

Table 25. Graphical nodes to express auxiliary constructs

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Viewpoint SysML::Views::Viewpoint Basic

«viewpoint»
stakeholders= <comma-separated list of stakeholders>
concerns= <stakeholder concerns>
SysML Specification v. 0.90 (Draft) 131

View SysML::Views::View Basic

Model UML::AuxiliaryCon-
structs::Models::Model

Basic

Table 26. Graphical paths to express auxiliary constructs, at Basic compliance level

PATH NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

Item Flow SysML::ItemFlows::ItemFlow Basic

Item Flow SysML::ItemFlows::ItemFlow Advanced

Table 25. Graphical nodes to express auxiliary constructs

NODE NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

«viewpoint»
<name>

«viewpoint»
stakeholder= ...
concerns= ...

Model

itemFlowName

«itemFlow»
itemProperty=itemPropertyName:conveyedClassifier
path=property1.property2.property3

itemFlowName

property1

«itemProperty»

property2
132 SysML Specification v. 0.90 (Draft)

Item Flow SysML::ItemFlows::ItemFlow Advanced

Table 26. Graphical paths to express auxiliary constructs, at Basic compliance level

PATH NAME CONCRETE SYNTAX ABSTRACT SYNTAX REFERENCE COMPLIANCE

property1.property2:conveyedClassifier

: conveyedClassifier

itemFlowName
SysML Specification v. 0.90 (Draft) 133

18.3 Package structure

18.4 UML extensions

18.4.1 Stereotypes

Abstract Syntax

Figure 18-1. Package structure of SysML auxiliary constructs

SysML::AuxiliaryConstructs

UML::AuxiliaryConstructs::Models UML::AuxiliaryConstructs::PrimitiveTypes

«import»«import»

«modelLibrary»
NumericTypesItemFlows

Views «modelLibrary»
Distributions

«modelLibrary»
Quantities

UML::AuxiliaryConstructs::InformationFlows

«import»

SysML::Parametrics

UML::Kernel

SysML::DistributionDefinitions
134 SysML Specification v. 0.90 (Draft)

Package ItemFlows

Figure 18-2. Stereotypes defined in package ItemFlows.

Package Views

Figure 18-3. Stereotypes defined in package Views.

18.4.1.1 ItemFlow

Description

An Item Flow describes the flow of items within a connector of an assembly. An item is a classifier that represents the type of
the thing that flows.

Attributes

• itemProperty: Property [0..1] A property that relates the instances of the item to the instances of its enclosing class.
Many item flows can pass through the same property.

• path:Property[*] {ordered} This is an (optional) ordered set of properties which define a path from the context of the
item flow to the item property that relates the instances of the item to the instances of its
enclosing class.

Constraints
[1] An ItemFlow has no more than one conveyed classifier that types the item property.

«metaclass»
UML::AuxiliaryConstructs::InformationFlows::InformationFlow

+itemProperty:UML::Classes::Property [0..1]
+path:UML::Classes::Property [*] {ordered}

«stereotype»
ItemFlow

stakeholder:String
concerns:String

«stereotype»
Viewpoint

viewpoint: String

«metaclass»
UML::AuxiliaryConstructs::Models::Model
SysML Specification v. 0.90 (Draft) 135

18.4.1.2 Viewpoint

Editorial Comment: The Model, View and Viewpoint constructs are still being unified.

Description

A viewpoint describes a view. A view is a representation of a model from a particular viewpoint.

A viewpoint is defined as a stereotype of UML::Model, which itself is a specialization of UML::Package. A view is
formed by importing the elements relevant to its viewpoint from other packages.

Attributes

• stakeholder Set of stakeholders.

• concerns The stakeholder concerns according to the viewpoint.

Constraints
[1] A viewpoint can only import elements, but does not own elements.

18.4.2 Diagram extensions

There are not diagram extensions defined.

18.4.3 Model Libraries

Editorial Comment: Guidelines for model library definitions are still being established.

18.4.3.1 Numeric Types

Abstract syntax

18.4.3.1.1 Complex

Description

A complex is a data type representing complex values.

Figure 18-4. Content of NumericTypes model library

«modelLibrary»
NumericTypes

«primitive»
Real

«dataType»
Complex
136 SysML Specification v. 0.90 (Draft)

18.4.3.1.2 Real

Description

A real is a data type representing real values.

18.4.3.2 Quantities

Abstract syntax

18.4.3.2.1 Dimension

Description

A dimension is a fundamental type that defines a basic type of value expressed by a quantity.

Dimensions specify fundamental types to express quantities. The SI unit system defines six dimensions: length, mass,
temperature, time, electric current, and luminous intensity. See Appendix F for a model library defining these specific
dimensions.

Attributes

• symbol:String Specifies the symbol of the dimension, e.g. L for length or M for mass.

18.4.3.2.2 DistributedQuantity

Description

A distributed quantity is a quantity with an associated distribution.

Figure 18-5. Model library Quantities

«modelLibrary»
Quantities

+symbol: String

Unitunit

0..1

0..1

0..10..1

+dimension

+symbol: String

Dimension

+value:Real

«dataType»
Quantity

0..1

0..1
+dimension

«primitive»
DistributedQuantity

«distributionDefinition»
Distribution

+distribution

1

SysML Specification v. 0.90 (Draft) 137

Associations

• distribution:Distribution Specifies the distribution of the quantity.

Constraints
[1] The dimension and unit of the distribution value must be compatible with the unit and dimension of the quantity.

Diagram extensions

The value of a distributed quantity is shown as follows:

<distributed quantity value> ::= '('<property name>'='<property value>
[',distribution='<distribution value>][','<property name>'='<property value>]*')'

where

• <distributed quantity value> is special notations for an instance value, i.e. it can be used as a <default> in the property
BNF.

• <distribution value>::= '('<distribution type>')('<property name>'='<property value>[','<property name>'='<property
value>]*')'

• <distribution type> is the name of the Distribution class, e.g. Uniform

• <property name> is the name of a property of DistributedQuantity

• <property value> is an expression that evaluates to the values of the property

It is allowed to omit an entry in the property list.

18.4.3.2.3 Quantity

Description

A quantity is a data type that specifies a value with a dimension and a unit of measure.

Associations

• dimension: Dimension Specifies the dimension of the value.

• unit: Unit Specifies the unit of the value.

Constraints
[1] If both dimension and unit are specified for a quantity, the dimension of the quantity must be the same as the dimension of

the associated unit.

Diagram extensions

The value of a quantity is shown as follows:

<quantity value> ::= '('<property name>'='<property value> [','<property name>'='<property value>]*')'

where
138 SysML Specification v. 0.90 (Draft)

• <quantity value> is special notations for an instance value, i.e. it can be used as a <default> in the property BNF.

• <property name> is the name of a property of Quantity

• <property value> is an expression that evaluates to the values of the property

It is allowed to omit an entry in the property list.

18.4.3.2.4 Unit

Description

A standardized quantity used as a unit of reference to express a quantity.

Note that compound units have to be defined in addition to simple ones. Future versions of SysML may support
compound units as a relationship of simple units.

Attributes

• symbol: String Specifies the unit symbol, e.g. m for meter or kg for kilogram.

Associations

• dimension: Dimension [0..1] Specifies the dimension of the unit.

18.4.3.3 Distributions

The Distributions package provides a standardized framework for parametric constraints that constrain properties. It includes
two stereotypes and a model library

Stereotypes

Abstract Syntax
SysML Specification v. 0.90 (Draft) 139

Package Distributions

18.4.3.3.1 DistributionDefinition

Description

A DistributionDefinition is a parametric constraint that constrains the value of one of its properties to be selected from within
a range of possible values.

A «distributionDefinition» provides a reusable definition of the rule by which a value for the property may be selected
within the range of its permissible values. The parameters of a «distributionDefinition» constraint may be used to specify the
range of values or other details of this rule.

In addition to its input parameters that define its range of values and their probabilities, a «distributionDefinition» must be
defined as holding a single property to which the stereotype «distributionResult» (see section 18.4.3.3.2) has been applied. The
property with this stereotype holds the distributed value determined as a result of the distribution. This value may in turn be
bound to other values in any containing context, just as input parameters of the distribution may also be bound or otherwise
constrained to provide all required inputs.

Constraints
[1] A «distributionDefinition» must hold exactly one property to which the «distributionResult» stereotype has been applied.

18.4.3.3.2 DistributionResult

Description

DistributionResult is a stereotype that designates the distributed value defined within a DistributionDefinition.

 A «distributionResult» stereotype must be applied to one of the parameters of a «distributionDefinition» (see section) to
define the distributed value which is determined as a result of the distribution.

Constraints
[1] A «distributionResult» stereotype may be applied only to a property that belongs to a DistributionDefinition.

Figure 18-6. Distribution stereotypes.

«stereotype»
ParamConstraint

«stereotype»
DistributionDefinition

«metaclass»
UML::Kernel::Property

«stereotype»
DistributionResult
140 SysML Specification v. 0.90 (Draft)

18.5 Compliance levels
The compliance levels are as defined in the tables in section 18.2.
SysML Specification v. 0.90 (Draft) 141

18.6 Usage examples

18.6.1 Item flows

Figure 18-7. Item flows with different notations.

Electrical System

o: ACOutlet

neg

a:ACAppliance

pos1

1

live
neutral

1
live

1
neutral

e:Electricity :Electricity

e:Electricity

{itemProperty=e}{itemProperty=e:Electricity}
142 SysML Specification v. 0.90 (Draft)

Figure 18-8. Item flows with nested properties

«system»
Vehicle

:VehicleController

:Engine :Brake

 input.throttleCmd:Signal

input:DriverInput

brakeCmd:Signal
«itemProperty»

input:DriverInput

throttleCmd:Signal
brakeCmd:Signal

DriverInput

brakeCmd
SysML Specification v. 0.90 (Draft) 143

18.6.2 Viewpoints

Editorial Comment: The Model, View and Viewpoint constructs are still being unified.

18.6.3 Real types

Figure 18-9. Viewpoints

Figure 18-10. Real types

«viewpoint»
SafetyView

Driver

Stop Car
«requirement>>
-id="340"
-criticality="High"
-text="The system shall..."

«requirement»
Braking performance

«v iew point»
stakeholder="safety engineers"
concerns="v ehicle safety "

Safety Test
Engineer

Test Brake

«requirement»
-id="342"
-criticality="Medium"
-text="The system shall..."

«requirement»
Braking reliability

totalWeight : Real

Vehicle
144 SysML Specification v. 0.90 (Draft)

18.6.4 Definition of Quantity subclasses constrained with constant dimensions and units

The specific quantity types defined in this example are used by the Firing Range example in Chapter 11, Parametrics. This
example provides local definitions of both the dimensions and units that it needs to define the specific Quantity subclasses that
will be constrained to have constant values of these dimensions and units. Even though the Mass unit is defined in the SIUnits
model library defined in Appendix F, this example does not import that library so that it may use its own naming convention
for dimensions and so reserve their names (without the Dim suffix) for the Quantity subclasses themselves.

Figure 18-11. Quantity subclasses

cls

«dataType»
Quantity

dimension: Dimension
= ForceDim {redef ines
dimension, readOnly}

«dataType»
Force

dimension: Dimension
= VolumeDim
{redef ines dimension,
readOnly}

«dataType»
Volum e

dimension: Dimension
= AccelerationDim
{redef ines dimension,
readOnly}

«dataType»
Acceleration

dimension: Dimension
= MassDim {redef ines
dimension, readOnly}

«dataType»
M ass

unit: Unit = KgPerM3
{redef ines unit,
readOnly}

«dataType»
SIDens ity

unit: Unit = M3
{redef ines unit,
readOnly}

«dataType»
SIVolum e

symbol="m3"

M 3: Unit Volum eDim :
Dim ens ion

ForceDim :
Dim ension

Acce le rationDim :
Dim ension

M assDim :
Dim ension

symbol="kgPerM3"

KgPerM 3: Unit Dens ityDim :
Dim ens ion

dimension: Dimension
= DensityDim
{redef ines dimension,
readOnly}

«dataType»
Dens ity

symbol="pounds"

pounds: Unit
SysML Specification v. 0.90 (Draft) 145

18.6.5 Usage of Quantity and Distribution

This example shows the usage of a quantity and the distribution definition Uniform.

18.6.6 Constant design values

This example extends the Firing Range example in Chapter 11, Parametrics, to make use of constant Quantity values on
attributes of the Shot100Kg subclass. The constant values are specified by instance specifications, which are referred to by
name in the constant value property strings.

Figure 18-12. Quantities and Distributions

System Design

« modelLibary»
MyQuantities

totalWeight : VehicleMass=(value=1000.0, unit=pounds, distribution=(Uniform)(min=990.0,max=1010.0))

Vehicle

unit:Unit=pounds {redefines unit, readOnly}
dimension:Dimension=MassDim {redefines dimension, readOnly}

«dataType»
VehicleMass

«dataType»
DistributedQuantity

«import»
146 SysML Specification v. 0.90 (Draft)

Figure 18-13. Quantities

cls

Firing Range Shot

s: Shot100Kg

FiringRange100Kg

density: SIDensity = shotDensity {readOnly}
volume: SIVolume = shotVolume {readOnly}

Shot100Kg

shotDensity:SIDensity
20000 (kgPerM3,)

shotVolume: SIVolume
0.005 (M3,)
SysML Specification v. 0.90 (Draft) 147

148 SysML Specification v. 0.90 (Draft)

19 Profiles

Editorial Comment: This chapter is not yet available for public review.

19.1 Overview

19.2 Diagram elements

19.3 Package structure

19.4 UML extensions

19.4.1 Stereotypes

19.4.2 Diagram extensions

19.5 Compliance levels

19.6 Usage examples
SysML Specification v. 0.90 (Draft) 149

150 SysML Specification v. 0.90 (Draft)

Part V - Appendices
This section contains non-normative appendices for this specification.
SysML Specification v. 0.90 (Draft) 151

152 SysML Specification v. 0.90 (Draft)

Appendix A.Diagrams

Editorial Comment: The diagram taxonomy in this appendix is being reconciled with the SysML package and
specification structure. A future version of this appendix may be migrated to Part I, since its content is generally
relevant to understanding SysML concete syntax.

A.1 Overview
SysML diagrams contains diagram elements (mostly nodes connected by paths) that represent model elements in the
SysML model, such as packages, classes, and associations. The diagram elements are referred to as the concrete syntax.

The SysML diagram taxonomy, which reuses many of the major diagram types of UML, is shown in Figure A-1. In some
cases, the UML diagrams are strictly re-used in SysML, whereas in other cases they are modified so that they are
consistent with SysML extensions. There were some UML diagrams that are not being identified as unqiue diagram types
within SysML. For example, the SysML deployment relationship that represents the deployment of software to hardware
is integrated with the SysML Assembly diagram. As a result, SysML does not use the UML deployment diagram. Two
new diagram types have been added for the initial version of SysML and others are planned for future versions.

Figure A-1. SysML Diagram Taxonomy

SysML Diagram

Structure
Diagram

Behavior
Diagram

Use Case
Diagram

Activity
DiagramClass Diagram Assembly

Diagram
Sequence
Diagram

State Machine
Diagram

Timing
Diagram

Parametric
Diagram

Requirement
Diagram
SysML Specification v. 0.90 (Draft) 153

The requirement diagram is a new SysML diagram type. A requirement diagram provides a modeling construct for text
based requirements, and the relationship between requirements, such as the trace relationship, and the relationship
between the requirements and the model elements that satisfy them.

The parametric diagram is a new SysML diagram type. A parametric diagram describes the parametric relationships
among the properties associated with classes, assemblies and items that flow between them. The parametric diagram is
used to integrate behavior and structure models with engineering analysis models such as performance, reliability, and
mass property models.

Although the taxonomy provides a logical organization for the various major kinds of diagrams, it does not preclude the
careful mixing of different kinds of diagram types, as one might do when one combines structural and behavioral
elements (e.g., showing a state machine nested inside an internal structure). Consequently, the boundaries between the
various kinds of diagram types are not strictly enforced as long as the implementation properly enforces the underlying
semantics and constraints.

The model elements and corresponding concrete syntax that are represented in each of the ten SysML diagrams is
described in the SysML chapters as indicated below.

• Activity Diagram - Activities chapter

• Assembly Diagram - Assemblies chapter

• Class Diagram - Classses chapter

• Interaction Overview Diagram - Interactions chapter (no longer part of SysML)

• Parametric Diagram - Parametrics chapter

• Requirements Diagram - Requirements chapter

• State Machine Diagram - State Machines chapter

• Sequence Diagram - Interactions chapter

• Timing Diagram - Interactions chapter

• Use Case Diagram - Use Cases chapter

• Other - Auxilliary chapter (item flows, ..), Allocation Chapter (allocation relationship, SysML Deployment, ..)
154 SysML Specification v. 0.90 (Draft)

Each SysML diagram has a frame, with a contents area, a heading, and a Diagram Description see Figure A-2.

The frame is a rectangle. The frame is sometimes used in cases where the diagrammed element has graphical border
elements, like ports for assemblies, entry/exit points on statemachines, gates on interaction fragments, and pins for
activities. In these cases, the frame can actually represent the enclosing model element versus just a diagram boundary.
The frame should not be omitted but sometimes will be defined by the border of the diagram area provided by a tool.

The diagram contents area contains the graphical symbols. The diagram type and usage defines the type of primary
graphical symbols that are supported, e.g. a class diagram is a diagram where the primary symbols in the contents area are
class symbols.

The heading is a string contained in a name tag (rectangle with cutoff corner) in the upper leftmost corner of the
rectangle, with the following syntax:

[<kind>]<name>[<parameters>

SysML diagrams types may have the following names as part of the heading:

• activity (act)

• assembly (asm)

• class (cls)

• interaction overview (iov) - no longer part of SysML

• logic (log) - reserved

• parametric (par)

• requirement (req)

• sequence (seq)

• state machine (s-m)

Figure A-2. Diagram Frame

Contents

<<diagramUsage>>
diagramKind:diagramName

<<diagram Description>>

version=”…"
description=”…"
reference=”..”
completeness=”..”
(User defined fields)Header
SysML Specification v. 0.90 (Draft) 155

• timing (tim)

• use case (u-c)

• verification (ver) - reserved

The diagram description is defined by a SysML Reference Data that is derived from a UML comment in the auxiliary
chapter. The diagram description is attached to a diagram frame that includes version, description, references to related
information, a completeness field that describes the extent to which the modeler asserts the diagram is complete, and user
defined fields. These can be used to specify the level of completeness of the diagram or corresponding model or other
information. In addition, the diagram description may identify the view associated with the diagram, and the corresponding
viewpoint that identifies the stakeholders and their concerns. (refer to Auxiliary chapter).

SysML also introduces the concept of a diagram usage. This represents a unique usage of a particulr diagram type, such
as a context diagram as a usage of an assembly, class, or use case diagram, or an entity relationship diagram as a usage of
a class diagram. The diagram usage can be identified in the header above the kind, name and parameters as <<diagram
usage>>. An example of a diagram usage extension is shown in Figure A-3. For this example, the header in Figure A-2
would replace diagram kind with “u-c” and <<diagramUsage>> with <<ContextDiagram>>. Applying a stereotype
approach to specify a diagram usage could allow a tool implementation to check that the diagram constraints defined by
the stereotype are satsified.

Some of the predefined diagrams usages include:

Figure A-3. Diagram Usages

diagramKind

<<stereotype>>
diagramUsage

UseCaseDiagram

<<stereotype>>
ContextDiagram
156 SysML Specification v. 0.90 (Draft)

• Activity diagram usage with control flow only - ControlFlow Diagram

• Activity diagram usage with swim lanes - SwimLane Diagram

• Class diagram usage for a assembly hiearchy - AssemblyHiearchy

• Class diagram usage for a function hiearchy - ActivityHierarchy

• Class diagram usage for an item hiearchy - ItemHierarchy

A.2 Guidelines
The following provides some general guidelines that apply to all diagram types.

• Decomposition of a model element can be represented by the rake symbol. This does not always mean decomposition in a
formal sense, but rather a reference to a more elaborated diagram of the model element that includes the rake symbol. The
elaboration of the model element can include the following:

• activity diagram - call behavior actions that call activities that refer to other activity diagrams.

• assembly diagram - parts can refer to other assembly diagrams.

• class diagram - structured classes can refer to other class diagrams

• interaction overview diagram - interaction fragments can refer to other sequence diagrams.

• parametric diagram - parametric relationships can be decomposed into other parametric diagrams.

• requirement diagram - requirements can be decomposed into other requirement diagrams.

• sequence diagram - interaction fragments can refer to other sequence diagrams

• state machine diagram - states can refer to other state machine diagrams.

• timing diagram - Segments of a timeline can refer to other timing diagrams

• use case diagram - use case can refer to other behavior diagrams (activity, state, interactions)

• The primary mechanism for linking a text label outside of a symbol to the symbol is through proximity of the label to its
symbol. This applies to ports, item flows, pins, etc.

• Page connectors - Page connectors (on-page connectors and off-page connectors) can be used to reduce the clutter on dia-
grams, but should be used sparingly since they are equivalent to go-to’s in programming languages, and can lead to “spaghetti
diagrams”. Whenver practical decompose a model element instead of using a page connector. A page connector is depicted as
a circle with a label inside (often a letter). The circle is shown at both ends of a line break and means that the two line end con-
nect at the circle.

• Diagram overlays are diagram elements that are allowed for any diagram type

• SysML provides the capability to represent a document using the UML 2 standard stereotype <<document>> applied to
the artifact model element. Properties of the artifact can capture information about the document. Use a <<trace>> abstraction
to relate the document to model elements. The document can represent text that is contained in the related model elements.

• SysML Diagrams including the enhancements describe in this section should conform to the Diagram Interchange Stan-
dard to facilitate exchange of diagram and layout information.

• Tabular representation is an optional alternative notation that can be used in conjunction with the graphical symbols as
long as the information is consistent with the underlying metamodel. Tabular representations are often used in systems engi-
neering to represent detailed information suchas interface definitions, requirements traceability matrixes, and allocation
SysML Specification v. 0.90 (Draft) 157

matrixes between various types of model elements. They also are often convenient mechanims to represent basic relationships
such as function and inputs/outputs in N2 charts. The UML superstructure contains a tabular representation of a sequence dia-
gram in an interaction matrix (refer to Superstructure Appendix with interaction matrix).
158 SysML Specification v. 0.90 (Draft)

Appendix B. Sample Problem

B.1 Purpose
TThe purpose of this appendix is to illustrate how SysML can support of the specification, analysis, and design of a system
using some of the basic features of the language.

B.2 Scope
The scope of this example is to provide at least one diagram for each SysML diagram type. The intent is to select simplified
fragments of the problem to illustrate how the diagrams can be applied, and also demonstrate some of the possible inter-rela-
tionships among the model elements in the different diagrams. The sample problem does not highlight all of the features of the
language. The reader should refer to the individual chapters for more detailed features of the language. The diagrams selected
for representing a particular aspect of the model, and the ordering of the diagrams are intended to be representative of applying
a typical systems engineering process, but this will vary depending on the specific process and methodology that is used.

B.3 Problem Summary
The sample problem describes the use of SysML as it applies to the development of an automobile (Vehicle System). The
problem is derived from a marketing analysis which indicated the need to increase the acceleration of the automobile from its
current capability. Only a small subset of the functionality and associated vehicle system requirements and design are
addressed to highlight this application.
SysML Specification v. 0.90 (Draft) 159

B.4 Diagrams

B.4.1 Concept Diagram for the “Vehicle System Operational Context”

The Concept Diagram for the “Vehicle System Operational Context” is a usage of a class diagram that depicts some of the
top level entities to be modeled. The diagram usage enables the modeler or methodologist to specify a unique usage of a
SysML diagram type using the extension mechanism described in the Diagram Appendix A. The entities are conceptual in
nature during the initial phase of development, but will be refined as part of the development process. The system and external
are user defined stereotypes that are not part of SysML, but help the modeler to identify the system of interest relative to its
environment. Each entity may include a graphical icon to help convey its intended meaning. The spatial relationship of the
entities on the diagram sometimes conveys understanding as well, although this is not captured in the semantics. Also, a back-
ground such as a map can be included to provide additional context. The associations among the classes can represent abstract
relationships among the entities (not included here).

«system»
Vehicle

«external»
Driver

«ConceptDiagram»
cls:OperationalContext «external»

Weather

«external»
Road

«external»
ExternalObject

«external»
Passenger

«external»
VehicleCargo
160 SysML Specification v. 0.90 (Draft)

B.4.2 Class Diagram for the “Vehicle System Operational Context”

The Class Diagram for the “Vehicle System Operational Context” depcits a top level depiction of the context for the sys-
tem under development in terms of the external entities the system will interact with. This refined representation of the “Vehi-
cle System Operational Context” in 0.4.1 includes some composition and specialization relationships between the conceptual
entities. In addition, a top level composite class called “Operational” has been added. The context, system, and external are
user defined stereotypes that are not part of SysML, but help the modeler to identify the system of interest relative to its envi-
ronment.

cls:OperationalContext

«system»
Vehicle

«external»
Environment

«external»
Driver

«external»
Vehicle

Occupant

«external»
Passenger

«external»
Vehicle
Cargo

«context»
Operational

«external»
Road

«external»
Weather

«external»
External
Object
SysML Specification v. 0.90 (Draft) 161

B.4.3 Requirement Diagram for the “Vehicle System Requirements Flowdown”

The requirement diagram for the “Vehicle System Requirements Flowdown” depicts a high level view of the requirements
flowdown. This diagram shows the trace relationship between the vehcile system specification and a top level market needs
document, along with a reference to the statement of work that provides the rationale for this trace. The vehicle system speci-
fication contains many text based requirements. A few requirements are highlighted including the critical requirement for the
vehicle to accelerate from 0 - 60 mph in less than 8 seconds. The critical requirement is an example of a requirement sterteo-
type subclass with a criticality property as described in the Model Library Appendix. A use case traces to the vehicle specifica-
tion to provide further refinement of the text based requirements. The vehicle system is intended to satsify the vehicle system
specification. A power subystem specification is a lower level specification that is derived from the vehicle system specifica-
tion. The power subystem design package satsifies this power subystem specification. The satsify relationship includes a
design rationale that refers to a trade study to support the selection of this design. An engine horsepower test case is also
shown to support verification of the power subsystem requirements. The tool implementation is expected to provide both a tree
stucture (i.e. an explorer view) of the the requirement specifications and alternative tabular formats as referred to in the dia-
gram appendix.

Vehicle System Use Cases

«requirement»
Power Subsystem Specification

«requirement»
Vehicle System Specification

req: VehicleSystem
ReqtsFlowdown

Vehicle System Design

Drive Vehicle

Driver

«system»
Vehicle

«assembly»
Power Train

«assembly»
Brakes

«trace»

«satisfy»«derive»

Power Subsystem Design
(Alternative = V6)

«assembly»
Engine

«assembly»
Transmission

«satisfy»
«rationale»

Ref: Trade-Off Analysis

«trace»

«rationale»
Ref: Statement of Work

Id: 102
text: System shall ..
criticallity: H

«criticalRequirement»
VehicleAcceleration

id: 111
text: System shall ..

«requirement»
R111

id: 337
text: Power
subsystem shall …

«requirement»
R337

id: 340
text: Power
subsystem shall ..

«requirement»
R340

«document»
Market Needs

System shall
accelerate from 0 -
60 mph in lest than
8 seconds under the
specified conditions

«testCase»
Engine Horsepower Test

«verify»
162 SysML Specification v. 0.90 (Draft)

B.4.4 Use Case Diagram for “Drive Vehicle”

The use case diagram for “Drive Vehicle” depicts the drive vehicle usage of the vehicle system. Several <<include>> use
cases are shown along with an <<extend>> use case that is optionally performed to support control of vehicle accessories.
Specialization of use cases is also shown for controlling vehicle accessories. The subject and the actors (driver and environ-
ment) interact with the system to realize the use case. The actors correspond to the external classes in 0.4.2. (Note:UML 2
actors are a subclass of classifiers.)

«system»
Vehicle

u-c:DriveVehicle

Drive Vehicle

Start Vehicle Control Vehicle
Speed

Control Vehicle
Direction

Turn-off
Vehicle

Control Vehicle
Accessories

«include»
«include»

«extend»

Control
Wipers

Control
Air Conditioner

Driver

«external»
Environment

Monitor Vehicle
& Environment

«include»

«include»

«include»
SysML Specification v. 0.90 (Draft) 163

B.4.5 Interaction Overview Diagram for “Drive Vehicle”

The interaction overview diagram for “Drive Vehicle” depicts the the top level flow of control associated with the use cases in
0.4.4. An alternative representation would be to apply a restricted use of an activity diagram where the actions can invoke an
interaction occurence as well as an activity. The interaction overview diagram is part of UML 2, but is not required for SysML
(refer to Interactions Chapter). However, it is being included as an example of a UML 2 diagram used in conjunction with
other SysML diagrams. The” Control Vehicle Speed” and “Start Vehicle” reference more detailed behaviors in 0.4.6 and 04.14
respectively.

iod:DriveVehicle

[accessory selected]

Monitor Vehicle
& Environment

Ref

Start Vehicle

Ref

Control Vehicle
Accessories

Ref

Control Vehicle
Speed

Ref

Control Vehicle
Direction

Ref

Turn-off
Vehicle

Ref
164 SysML Specification v. 0.90 (Draft)

B.4.6 Swim Lane Diagram for “Control Vehicle Speed”

The swim lane diagram for “Control Vehicle Speed” is a usage of an activity diagram (refer to Diagram Appendix for
information on diagram usages) that depicts the driver and vehicle as swim lanes. The swim lanes enclose the functions that
are performed by the driver and vehicle to control the vehicle speed. This behavior is referenced in the interaction overview
diagram in 0.4.5. The vehicle functions are represented as operations of the vehicle class in 0.4.7. The outputs from the driver
actions (apply brakes and apply accelerator) are shown to produce streaming outputs that correspond to brake pressure and
accelerator position respectively. Streaming inputs and outputs indicate that the function can accept the streaming inputs and
produce streaming outputs while the function is executing. The brake pressure and accelrator position outputs are inputs to to
the vehicle functions for controlling brake force and power respectively. The Brake Force and External Torque outputs from
the vehicle are designated as continuous outputs. When an ignition off signal is received, the vehicle functions are disabled.
The rake signal on control power indicates it is further decomposed as shown in (0.4.11).

«SwimLaneDiagram»
act:ControlVehicleSpeed

[brake applied][accelerator applied]

Ignition
Off

Acclerator
Position

Brake
Pressure

«continuous»
Brake
Force

«continuous»
ExternalTorque

Driver

[else]

Vehicle

Apply Brakes

 Apply Accelerator

 Control Brake
Force

Control Power

{stream}

{stream}

{stream}

{stream}

{stream}

{stream}
SysML Specification v. 0.90 (Draft) 165

B.4.7 Class Diagram for the “Vehicle System Context”

The class diagram for the “Vehicle System Context” depicts the vehcile system as a black box that interacts with the driver and
the road. The vehcile is stereotyped <<system>>, and contains features that represent physical characteristics (weight), physi-
cal stores (fuel), and data store (vehicleStatus). The fuel property is typed by a Fuel class that can include properties of its own
such as octane level, cost per gallon, etc. Weight is typed by a quantity called mass that is defined in the auxiliary chapter and
model library. Mass can include units and values, and be further specialized to include a probability distribution on its values.
The Control Brake Force and Control Power functions have been allocated to the vehicle system as indicated by the functions
in the vehicle class based on teh swim lane analysis in 0.4.6. This diagram also depicts the item flows that convey the input and
outputs between the driver and the vehicle.

cls:VehicleSystemContext

«allocated»
allocatedFrom=

controlPower,
controlBrakeForce,
controlWheelPosition

vehicleStatus:Boolean
«store» fuel:Fuel
«phys» weight:Mass

«system»
Vehicle

Driver

«phys» surface conditions
«phys» incline

«external»
Road

VehicleStatus

DriverInput
166 SysML Specification v. 0.90 (Draft)

B.4.8 State Machine Diagram for the “Vehicle System Operate State”

The state machine diagram for the “Vehicle System Operate State” depicts the composite operate state and its substates. The
events and guard conditions on the transitions are also shown.

s-m:VehicleSystemOperateState

Operate

Start

Terminate

Vehicle On

Neutral

Forward

Reverse

engine on

Shift [gearSelect=reverse]

Shift [gearSelect=neutral]

Shift [gearSelect=forward]

Shift [gearSelect=neutral]

ignition off

engine off

ignition on
SysML Specification v. 0.90 (Draft) 167

B.4.9 Class Diagram for the “Vehicle System Hierarchy”

The class diagram for the “Vehicle System Hierarchy” highlights some of the assemblies that compose the vehicle system. The
vehicle is a sterotype of system, which in-turn is a sublcass of the assembly stereotype. (Note: <<system>> is not a standard
SysML stereotype). The power train is further decomposed into its assemblies. The engine includes one of two types of engine
assemblies (a V6 or V8). In addition, the Vehicle Controller assembly is the execution platform for the vehicleControl soft-
ware component as indicated by the <<allocatedSoftware>>. This represents a subtype of the allocation relationship applied
between structural components of hardware and software as indicated in the allocation section of the Special Usages Appen-
dix. The <<allocatedSofware>> and <<software>> stereotypes are not a standard SysML but can be subclassed from the
SysML stereotypes for allocation and assembly resepectively. A part of the vehicleControl software component can be allo-
cated if more granulatiry is required by designating the part as vehicleControl.part. The diagram description includes version
information, description information, references the vehicle parts list, and states the assembly tree is only paritally complete.
(Refer to Diagram Appendix A for explanation).

«system»
Vehicle

«assembly»
Power Train

«assembly»
Brake

«assembly»
Steering

«assembly»
Body & Chassis

«assembly»
Engine

«assembly»
Transmission

«assembly»
Transaxle

«assembly»
Wheel

«assembly»
V6-Engine

«assembly»
V8-Engine

{o r }

4

«allocatedSofware»
allocatedFrom=

<<software>> vehicleControl

«assembly»
Vehicle Controller

«assembly»
Suspension

cls: VehicleSystemHierarchy

«diagramDescription»

version=”0.1"
description=”vehicle assembly tree"
reference=”Vehicle parts list”
completeness=”partial”
168 SysML Specification v. 0.90 (Draft)

B.4.10 Assembly Diagram for the “Power Subsystem”

The assembly diagram for the “Power Subsystem” depicts the various parts of the vehicle that realize controlPower from the
class diagram in 1.7. The assemblies (classes) that type the parts are indicated by the colon (:) notation in the Figure and are
derived from the Vehicle System Hierarchy in 0.4.9. This distinction enables the same generic assembly class to be reused in
many different contexts and still be uniquely identified for a particular use. The same instance of the parts, such as the vehicle
controller, may play different roles in different subsystems. As a result, the parts are shared and not owned by the enclosing
subsystem class, and are represented by dashed outlines instead of a solid line. The item flows between the parts are indicated
by the solid arrowheads on the connectors. The ports on the wheels are shown to by typed by tire. The connector between the
engine and transmission is shown to be allocated to a driveshaft assembly via the allocation relationship (refer to Allocation
chapter and Special Usages Appendix).

NOTE TO THE EDITOR: The parts in the PowerSubsystem should be dashed lines, but this does not appear in this diagram.

:Engine :Transmission :Transaxle

rightRear:Wheel

leftRear:Wheel

:VehicleController

throttleCmd:signal gearSelect:signal

:fuel

:tire

:tire

asm: PowerSubsystem

:driverInput

«AllocatedStructure»
{allocatedTo=driveshaft}

:torque
SysML Specification v. 0.90 (Draft) 169

B.4.11 Swim Lane Diagram for “Control Power”

The swim lane diagram for “Control Power” depicts the the functions that are performed by the various parts of the system to
control power. The inputs and outputs to the activity are indicated as well using the pin notation for the object nodes. The parts
in the swim lane diagram are the parts from the Power Subystem in the assembly diagram in 0.4.10.

«SwimLaneDiagram»
act: ControlPower

:VehicleController :Engine :Transmission :Trasnaxle :Wheel

External
Torque

Accelerator
Input

Fuel
«continuous»

«continuous»

«continuous»

«continuous»

«continuous»

«continuous»
«continuous»

Generate Throttle
Command

 Generate
Torque

Amplify Torque

Transmit Torque
To Wheel

 Provide
Traction
170 SysML Specification v. 0.90 (Draft)

B.4.12 Parametric Diagram for “Vehicle Peformance”

The parametric diagram for “Vehicle Performance” depicts a network of parametric constraints (equations) between properties
that impact the critical performance parameters for vehicle acceleration and speed. One of the critical requirements from 0.4.3
was to accelerate from 0 - 60 miles per hour in less than 8 seconds. This diagram describes the parametric relationships
between the properties that are associated with the different parts of the vehicle and enviornment. The sum of various types of
forces, including gravitational, drag, friction, and powertrain are summed and integrated to determine vehcile acceleration and
speed. Time is a property of a global clock that is implicitly used in all the equations. The definitions of the parametric con-
straints can be specified in a separate class diagram as described in the parametric chapter. The parametric diagram can be pro-
vided to the appropriate tool to support detailed performance analysis. The more abstract equations such as the power train
equations can be defined in detail and executed in a simulation to determine whether the acceleration requirement is being
satsified and/or to perform sensitivity analysis on the various system paraemters.

NOTE TO THE EDITOR: Lines should be dashed.

Vehicle.speedVehicle.acceleration

Vehicle.dragForce

Vehicle.powertrainForce

Vehicle.dragCoef

Vehicle.weightRoad.incline

Engine.displacement

par:VehiclePerformance

«paramConstraint»
:NewtonsLaws

{Force = m*a(t)}

Critical Parameters

«paramConstraint»
:GraviationalForce

{Gravitational Force = weight * sin(theta)}

«paramConstraint»
:TotalForce

{Total Force = Sum Forces}

«paramConstraint»
:Power Train Force

«paramConstraint»
:DragForce

{Drag Force = 0.5*dragCoef*rho*speed^2}

«paramConstraint»
:Speed

{Integrate (accel)}

«paramConstraint»
:TotalWeight

{Total Weight = Sum Part Weighti}

«paramConstraint»
:FrictionForce

{Friction Force = GravitationalForce * Cf}

Tire.Cf

Global.time

Compute time for
car to accelerate
from 0-60 mph.
SysML Specification v. 0.90 (Draft) 171

B.4.13 Timing Diagram for the “Vehicle Performance Timeline”

The timing diagram for the “Vehicle Performance Timeline” depicts the vehicle speed property from 1.12 as a function of
time. Based on the analysis performed, the vehicle is able to satisfy its acceleration requirement in 0.4.3 using the V6 engine
shown in 0.4.9. The vehicle operational state from the state machine diagram in 0.4.8 is also depicted as a function of time.

Tr
an

sm
is

si
on

St
at

e

Vehicle
Speed
(mph)

Gear 1

Neutral

10
20
30
40
50
60
70
80

Time (seconds)
1 2 3 4 5 6 7 8 9 10

Requirement

X

Estimated
Performance

Gear 2

Gear 3

Gear 4

Alternative =
V6

tim:VehiclePerformanceTimeline
172 SysML Specification v. 0.90 (Draft)

B.4.14 Interaction Overview Diagram for “Start Vehicle”

The interaction overview diagram for “Start Vehicle” depicts the behavior which was referenced in the higher level interaction
overview diagram in 0.4.5. This diagram can be thought of as a restricted use of an activity diagram where the actions invoke
an interaction occurence. As mentioned previously, this diagram is part of UML 2, but is not required for SysML (refer to
Interactions Chapter). This diagram references more detailed behaviors. In particular, the Test Vehicle references the sequence
diagram in 0.4.15.

Ignition on

Display Faults

[else]

[fault detected] Ref

Test Vehicle

Ref

Start Engine

Ref

Initialize Engine

Ref

iod: Start Vehicle
SysML Specification v. 0.90 (Draft) 173

B.4.15 Sequence Diagram for “Test Vehicle”

The sequence diagram for “Test Vehicle” is referenced in the interaction overview diagram in 0.4.14, and depicts the sequence
of message flows involved in testing the vehicle. The parts are typed by the assemblies in the system hierarchy in 0.4.9.

:VehicleController :Engine

initiateTest

verifyEnginePressure

verifyTiming

provideStatus

seq: TestVehicle

provideStatus
174 SysML Specification v. 0.90 (Draft)

B.4.16 Sequence Diagram for “Monitor Vehicle and Environment”

In order to provide scaleable descriptions of use cases, interactions can be described in a number of diagrams that reference
one another. For example, the Monitor Vehicle & Environment interaction from the interaction overview diagram in 0.4.5 can
be shown as a sequence diagram. In this case the monitoring is continuously looping, and references further interactions, Envi-
ronmental Sensors and Engine Sensors.

In the Environmental Sensors interaction, shown here in a referenced sequence diagram, the environment interacts with the
vehicle sensors. The Environment includes a reference to Environment Detail which represents a decomposition of the
Environment into its constituent parts as shown in the following sequence diagram.

sensors:Sensor:Environment enginesensors:Sensorcontrol:Vehicle Controller

loop

ref Environmental Sensors

ref Engine Sensors

seq:Monitor Vehicle and Environment

sensors:Sensor
:Environment

ref Environment Detail

«external»

weather data

road data
environmental data

seq: Environmental Sensors

theRoad:Road theWeather:Weather otherEnv:ExternalObject

road data

weather data

Position data

seq:Environment Detail
SysML Specification v. 0.90 (Draft) 175

176 SysML Specification v. 0.90 (Draft)

Appendix C. Specialized Usages

C.1 Translating EFFBDs into Activity Diagrams

C.1.1 Overview

 Enhanced Functional Flow Block Diagrams (EFFBD) are a kind of control and item/data flow diagram commonly used in the
systems engineering community. They are similar to activity diagrams, and the SysML activity chapter gives extensions for
EFFBDs that are a separate compliance point from the rest of activities. Even activities with EFFBD extensions differ from
EFFBDs in ways that require translation:

1. Translation between EFFBD and UML terminology, where these are different (section C.1.2).
2. Most EFFBD notation is different in activity diagrams, however, the translation is one-to-one in most cases, and follows

the terminology translation (section C.1.2). A common notation will facilitate communication between software and sys-
tems engineers.

3. Some EFFBD constructs require usage patterns for translation to activity diagrams (section C.1.3).

C.1.2 Teminology and notation

Most EFFBD terminology is different than Activity Diagrams, but most of the translation is one-to-one. The translation
between EFFBD and Activity terms is given in Table 1, where these are not the same. Translation of EFFBD notation follows
the translation of terms below.

Table 1. EFFBD - UML Terminology mapping.

EFFBD TERM ACTIVITY DIAGRAM TERM

External Input/Output Activity Parameter Node

Item Flow Object Flow

Item Node Pin (Object Node notation)

Triggering Item Input Input parameter with minimum mul-
tiplicity greater than zero. The
SysML term is “required input”.

Nontriggering Item Input Input parameter with minimum mul-
tiplicity equal to zero. The SysML
term is “optional input”.

Select Decision, Merge

Branch Annotation Guard

Concurrency Fork, Join

Multi-exit Function Activity with output Parameter Sets

Completion Criteria Postconditions on output Parameter
Sets
SysML Specification v. 0.90 (Draft) 177

In addition, systems engineers use different terminology than UML activities in some cases. Tool vendors may account for
these differences, but they are not changes to the UML metamodel. The translation to systems engineering terms is given in
Table 2, where these are different.

C.1.3 Examples

Some EFFBD constructs are modeled less compactly in activity diagrams, even with the EFFBD extensions. Rather than add
more shorthands to activity diagrams, these constructs are translated to activities, sometimes by a one-to-many mapping. The
execution semantics is the same. Table 3 summarizes these translations from EFFBD constructs to activity diagrams.

Table 2. SysML - UML terminology mapping.

SYSML UML

Function or Activity Activity (a kind of Behavior)

Usage of a Function in an
Activity

Action (usually CallBehaviorAction)

Item Class (object or data), usually flows
between system elements.

Input/Output Item A Class used as the type of a parame-
ter.

Table 3. EFFBD - UML usage pattern.

EFFBD CONSTRUCT ACTIVITY DIAGRAM USAGE PATTERN

Multiple Edges from Item
Node

Fork after ObjectNode.

Iteration, Loop Usage pattern for Flow, Decision,
Merge

Kill branch Usage pattern for Fork, Join, Inter-
ruptible Region, and Join Specifica-
tion.

Iteration/Loop Queuing Usage pattern for Central Buffer
Nodes.
178 SysML Specification v. 0.90 (Draft)

1. When EFFBD item nodes have multiple item flows coming out of them, items leaving the node traverse all item flows at
once, whereas for UML object nodes each object token can traverse only one outgoing edge. In UML, this EFFBD
semantics requires a fork after an object node to explicitly copy the object token, as shown in Figure C-1.

2. EFFBD uses a loop node to both start and end a loop, whereas UML uses a merge node to open a loop and a decision node
to end a loop. Some implementations of EFFBD have a special node to exit a loop, where as UML does not. in UML, this
EFFBD semantics is translated to the pattern shown at the bottom of Figure Figure C-2, using the EFFBD notational
extension for loop nodes. A decision at any point can exit from the loop.

Figure C-1. Activity translation of EFFBD item node with multiple outgoing flows.

Figure C-2. Activity translation of EFFBD loop node.

Item 1

Item 1

EFFBD

UML

 LP Function 1 LP

 LE

 OR Function 2 Function 3

 LP
[else]

Function 1 Function 2 Function 3

[finished
looping]

EFFBD

UML with
notational
extensions
SysML Specification v. 0.90 (Draft) 179

3. EFFBD iteration nodes calculate the number of times to cycle only once, at the beginning of the first iteration, whereas
UML LoopNode calculates at every cycle. In UML, this EFFBD semantics is translated to the pattern shown at the bot-
tom of Figure Figure C-3, using the EFFBD notational extension for iteration nodes. A function is called to determine
how many times to iterate, and this is checked by a decision node.

4. EFFBD kill branches come out of start-concurrency nodes to indicate that if the branch reaches the corresponding end-
concurrency node before the other branches from the same start-concurrency, then the others are terminated. In UML, this
EFFBD semantics is translated to the pattern shown at the bottom of Figure C-4. The dashed box indicates an interrupt-
ible region, and the edge labelled A is the interrupting edge. If edge A is traversed before Function 1 is complete, then
Function 1 will be terminated, otherwise, both tines of the fork complete and are synchronized at the join. The join spec-
ification requires only that edge A be traversed, so will be satisfied whether edge A terminates Function 1 or not. If there

Figure C-3. Activity translation of EFFBD iteration node.

 IT Function 1 ITFunction 2 Function 3

Function 1 Function 2 Function 3
Determine
Number of
Iterations

 IT
[else]

[finished
iterating]

EFFBD

UML with
notational
extensions
180 SysML Specification v. 0.90 (Draft)

were a third tine that was a kill branch, with an edge named B leading to the join, then the join specification would be A or
B.

Figure C-4. Activity translation of EFFBD kill branch.

Function 1

Function 2
kill

 AND

Function 1

Function 2

 AND

{ joinSpec = A }

A

«interruptibleRegion»

EFFBD

UML
SysML Specification v. 0.90 (Draft) 181

5. EFFBD iteration and loop nodes support queuing, whereas UML decision nodes do not. In UML, this EFFBD semantics
requires a central buffer node before the iteration or loop node, as shown in Figure C-5.

C.2 Allocation Usages

C.2.1 Overview

This section provides additional discussion and clarification on the need for and use of allocation by systems engineering, and
the support of these concepts in SysML. Various uses of the term “allocation” are discussed below.

C.2.2 Teminology and notation

C.2.2.1 Systems Engineering Uses of the term “Allocation”

"Requirement Allocation" is the allocation of requirements to a system design, implementation, deployment, or any other
aspect of a system. "Requirement Allocation" also refers to the establishment of relationships between requirements. This
kind of allocation is addressed by SysML::trace and SysML::satisfy relationships in Chapter 17 of this document.

"Functional Allocation" relates to the systems engineering concept segregating form from function. This concept requires
independent models of "function" (behavior) and "form" (structure, object), and a separate, deliberate mapping between ele-
ments in each of these models. It is acknowledged that this concept does not support a standard object oriented paradigm, nor
is this always even desirable. Experience on large scale, complex systems engineering problems have proven, however, that
segregation of form and function is a valuable approach.

“Flow Allocation” specifically maps flows in functional system representations to flows in structural system representa-
tions.

"Structural Allocation" is associated with the concept of separate "logical" and "physical" representations of a system . It
is often necessary to construct separate depictions of a system and define mappings between them. For example, a complete
system hierarchy may be built and maintained at an abstract level. In turn, it must then be mapped to another complete assem-
bly hierarchy at a more concrete level. The set of models supporting complex systems development may include many of these

Figure C-5. Activity translation of EFFBD iteration/loop queuing.

 LP/
IT

LP/IT«centralBuffer»
Item 1

Item 1EFFBD

UML
182 SysML Specification v. 0.90 (Draft)

levels of abstraction. This specification will not define "logical" or "physical" in this context, except to acknowledge the stated
need to capture allocation relationships between separate system representations.

"Deployment Allocation" is the association, sometimes preliminary, of conceptual, abstract software assemblies with con-
ceptual, abstract hardware assemblies. This is related to, but larger in scope than, the UML 2 concept of Deployment. UML2
allows only that SoftwareArtifacts be deployed to Nodes. In forming the system organizing concepts related to generalized
systems including hardware, personnel, environment, and other elements, a more flexible mechanism for allocation of soft-
ware to hardware is required. This is primarily because the form, or even existence, of software artifacts may not be under-
stood at any given point in the system development, especially during the earlier phases.

"Property Allocation" focuses on allocation of system performance to various elements in the system model. Decompos-
ing and allocating performance budgets, estimates, and measures of performance fall under this type of allocation. These rela-
tionships are addressed in Chapter 11 of this document.

The following table outlines the various relationships implied by the term “allocation” as typically employed by systems
engineers. It also shows how these relationships are depicted in SysML. Note that Requirement Allocation and Property
Decomposition/Allocation are not covered in this chapter, but the necessary relationships are described in other chapters.

Table 4 Uses of the term “Allocation”, and corresponding relationships in SysML .

Employment Relationship From To Chap

1. Requirement Allocation UML::trace
SysML::satisfy

Requirement
Packageable Element

Requirement
Requirement

17

2. Behavioral Allocation (see below)

 2.1 Functional Allocation ownedBehavoir
ownedOperation
SysML::allocation

Behavior
Operation
Function (activity)

BehavioredClassifier
Class
Assembly/Class

 2.2 Flow Allocation (see below)

 2.2.1 Object Flow SysML::allocation
UML::realizingConnector
UML::realizingActivi-
tyEdge

ObjectNode
Connector
ObjectFlow

ItemProperty
ItemFlow
ItemFlow

 2.2.2 Control Flow UML::realizingActivi-
tyEdge

ControlFlow ItemFlow

 2.2.3 Pin to Port (deferred) Activity Pin Port

 2.3 Interaction Allocation UML::realizingMessage Message ItemFlow

3. Structural Allocation (e.g.
Logical-Physical)

(see below)

 3.1 Assemblies SysML::allocation Assembly (e.g. logical) Assembly (e.g. physical)

 3.2 Flows SysML::allocation ItemFlow (e.g. logical)
ItemProperty

ItemFlow (e.g. physical)
ItemProperty

 3.3 Connectors SysML::allocation Connector (e.g. logical) Assemblies and Connec-
tors (e.g. physical)
SysML Specification v. 0.90 (Draft) 183

C.2.2.2 Allocation of Definition vs. Allocation of Usage

Allocation is used to relate model elements in different kinds of diagrams in a very general, flexible way. SysML supports
allocation both of the generic definition of a model element, and of the specific usage of a model element (e.g. as a property
(Part) of an assembly, or Action of an Activity). The definition of a model element (for example as expressed in a class,
assembly, or action), establishes characteristics that the element will exhibit regardless of where it is used. The usage of a
model element (for example as expressed in a property, part, or action), establishes how the model relates to other model ele-
ments for a specific purpose. Class diagrams depict the definition of model elements, where activity and assembly diagrams
depict the usage of model elements. This is shown in the following figure.

Figure C-6. Model Element Defintion expressed in Class Diagram, & Model Element Usage expressed in Assembly Diagram

Where diagrams express Use of model elements rather than their Description (as in Activity Diagrams and Assembly
Diagrams), it is important to distinguish if the allocation depicted is simply allocation of usage, or if it implies allocation of
definition.

Allocation relationships may be categorized based on the type of model elements that are allocated and may include:

1. Allocation of Usage (AoU): examples include Action to Part, Part to Part, ObjectNode to ItemProperty.

2. Allocation of Definition (AoD): examples include Activity to Assembly, Assembly to Assembly, Class to Class.

3. Assymetric Allocation, Definition to Usage (AADtU): examples include Activity to Part, Software Assembly to
Hardware Processor.

4. Assymetric Allocation, Usage to Definition (AAUtD): examples include Action to Assembly

 3.4 Ports (see 3.1) SysML::allocation Port (e.g. logical) Port (e.g. physical)

4. Deployment Allocation
(e.g. Software to Hardware)
(subset of Structural Alloca-
tion)

SysML::allocation Assembly (software)
Connector (software)
ItemFlow (software)
ItemProperty (software)

Assembly (hardware)
Connector (hardware)
ItemFlow (hardware)
ItemProperty (hardware)

5. Property Decomposition/
Allocation

VariableBinding
PropertyBinding

Property
Property

ParametricRelation
Element

11

Employment Relationship From To Chap

cls:Definition of Elements A, B, D, E

D

A

d1

B

d2

E

e1

asm:Usage of Elements A, B

D

d1:A

d2:B

E

e1:B

Note multiple
uses of B
184 SysML Specification v. 0.90 (Draft)

Each of these categories of Allocation relationships have potential usefulness to systems engineers. See section 16.6.1 for fur-
ther discussion of how these categories of allocation may be employed. SysML will accommodate each of these categories,
both in metamodel and in diagram notation. Specific attention was paid to making diagram elements distinctive for AoU,
AoD, AADtU and AAUtD in each diagram type.The following table depicts various ways AoD, AoU, AADtU, and AAUtD
might be employed.

C.2.3 Examples

C.2.3.1 Diagrams for Allocation

Allocation relationships will typically be depicted on Class Diagrams, Assembly Diagrams, or Activity Diagrams. Function-
alAllocation and FlowAllocation may be depicted together using activity diagrams with activity partitions (aka swimlanes)
and AlloctionReferences. It may also be shown in tabular views.

C.2.3.2 Subtypes of Allocation

Based on the tables above, the following subtypes of the allocation dependency may prove useful

Table 5 Recommended employment of AoD, AoU, AADtU, AAUtD

Allocation of Definition
(AoD)

Allocation of Usage (AoU) Assymetric Allocation Defi-
nition to Usage (AADtU)

Assymetric Allocation Usage
to Definition (AAUtD)

E.g. Assembly to Assembly,
or Activity to Assembly

E.g. Part to Part, Action to
Part, Connector to Connector

E.g. Assembly to Part,
Activity to Part

E.g. Part to Assembly, Action
to Assembly,

Recommended employment
(Table 22):
- Function to Assembly (2.1)
- Assembly to Assembly (3.1)

Recommended employment
(Table 22):
- ObjectFlow to ItemFlow
(2.2.1)
- Connector to ItemFlow
(2.2.1)
- ObjectNode to ItemProperty
(2.2.1)
- Connector to Connector/
Part (3.3)
- Port to Port (3.4)
- ItemFlow to ItemFlow (3.2)
- SystemDeployment
(Software Part to Hardware
Part) (4)

Recommended employment
(Table 22)
- TBD

Recommended employment
(Table 22):
- (Software Assembly to
Hardware Part) (4)
SysML Specification v. 0.90 (Draft) 185

Figure C-7. Useful subtypes of the SysML::Allocation dependency

For each subtype of the SysML::Allocation dependency, the user model must include a corresponding subtype of the
SysML::Allocated stereotype with a correstponding name, e.g. the FunctionalAllocation dependency must have a Functional-
lyAllocated stereotype, which provides the population of /allocatedFrom and /allocatedTo properties for model elements
which use the FunctionalAllocation dependency. It is possible for a given model element to be stereotyped by multiple deriv-
ative allocated stereotypes, if it participates in multiple types of Allocation dependencies. When depicted diagramatically, each
type of allocation should appear in a separate compartment, as shown below.

Figure C-8. Depiction of multiple allocation types for a single model element.

The user may further subtype allocation for special purposes. It is recommended that each subtype of allocation include the
appropriate contstraints neccessary for that type.

«stereotype»
SysML::Allocation

«stereotype»
FunctionalAllocation

«stereotype»
FlowAllocation

«stereotype»
StructuralAllocation

Constraint
allocatedFrom activities or actions
allocatedTo classes, assemblies, or
parts

Constraint
allocatedFrom ObjectNode
allocatedTo ItemProperty

Constraint
allocatedFrom Class, Assembly, Part
or Connector
allocatedTo Class, Assembly, Part or
Connector

«structurallyAllocated»
{allocatedTo= Class3}

«functionallyAllocated»
{allocatedFrom= Activity1}

Class2

Class2

«functionallyAllocated»
{allocatedFrom= Activity1}
«structurallyAllocated»

{allocatedTo= Class3}
186 SysML Specification v. 0.90 (Draft)

Figure C-9. Example of further subtypes of the Allocation dependency using a Profile

C.2.3.3 Requirement Allocation

The Allocation dependency does not refer to Requirements. See chapter 17 for Requirement dependencies.

C.2.3.4 Behavioral Allocation

Behavioral allocation relates purely behavioral model elements to structural model elements. Behavioral allocation is consid-
ered in three parts: allocation of Function (activity) to Assembly, allocation of ActivityEdge (object or control flow) to Con-
nector, and corresponding allocation of activity Pin to assembly Port. Note that Control Flow allocation to Connector, and
activity Pin allocation to assembly Port, are not defined in this specification and have been deferred until a future release.

Functional Allocation (Function to Assembly)

Example: consider the functions required to avoid wheel lockup when applying brakes in a car, and the system necessary
to implement these functions:

«stereotype»
SysML::Allocation

«stereotype»
SysML::StructuralAllocation

«profile»
User Allocations

«stereotype»
QoS_Allocaiton

«stereotype»
SWtoHW_Allocation
SysML Specification v. 0.90 (Draft) 187

Figure C-10. Functional Hierchy & Structural Hierarchy

Consider how the fuctions should get allocated to the system assemblies:

Figure C-11. Functional Allocation (AoD) on Class Diagram

Use of Allocation Compartments provides the following compact representation (Advanced Compliance):

cls:Functional Hierchy

«activity»
Prevent Brake

Lockup

«activity»
Detect Loss of

Traction

«activity»
Modulate

Braking Force

cls:Structural Hierchy

«assembly»
Traction
Detector

«assembly»
Brake

Modulator

«assembly»
Anti-Lock
Controller

cls:Functional Allocation1

«assembly»
Traction
Detector

«functionalAllocation»

«functionalAllocation»

«assembly»
Brake

Modulator

«activity»
Detect Loss of

Traction

«activity»
Modulate

Braking Force
188 SysML Specification v. 0.90 (Draft)

Figure C-12. Allocation Compartments on Class Diagram and Assembly Diagram

cls:Functional Allocation2

«functionallyAllocated»
{allocatedFrom=

 Detect Loss of Traction}

«assembly»
Traction Detector

«functionallyAllocated»
{allocatedFrom= Modulate
Braking Force}

«assembly»
Brake Modulator

«assembly»
Anti-Lock
Controller

asm:Functional Allocation3

Anti-Lock Controller

modulator
Interface

modSignals

«functionallyAllocated»
{allocatedFrom=
 Detect Loss of Traction}

:Traction Detector

«functionallyAllocated»
{allocatedFrom=
Modulate Braking Force}

:Brake Modulator

act:Functional Allocation1

traction
LossFlow:

traction
LossFlow:Detect Loss of

Traction
Modulate

Braking Force

«functionallyAllocated»
{allocatedTo= Traction
Detector}

«functionallyAllocated»
{allocatedTo= Brake
Modulator}
SysML Specification v. 0.90 (Draft) 189

Figure C-13. Functional Allocation represented with Property Comments on Activity Diagram (AoD)

Figure C-14. Alternative representation of Functional Allocation using Property Compartments

 ActivityPartition

An ActivityPartition (a.k.a. “swimlane”) in UML2 can be used to depict either 1) the ownedOperation relation between a
CallOperationAction and a Class, or 2) the ownedBehavior relation between a CallBehaviorAction and a BehavioredClassi-
fier.

System engineers may make use of 1) to serve the purpose of functional allocaitn, if the specific method used accommo-
dates an Operation-based approach to describing functionality. The drawback of this approach is that it supports only Alloca-
tion of Definition, not Allocation of Usage. If specific usages of Activities or Classifiers need to be considered, this approach
will be inadequate.

Systems engineers can not make use of 2) to serve as functional allocation, because ownedBehavior is an exclusive
namespace relation, and a function (Activity) can be allocated to only one BehavioredClassifier. This does not accommodate
reuse of functions.

To accommodate the full scope of functional allocation, the Allocation stereotype of Activity Partition has been proposed.
An example of its use is provided below. The result of this diagram is that an Allocation dependency will exist between Detect
Loss of Traction (client) and Traction Detector (supplier), and another will exist between Modulate Braking Force (client) and
Brake Modulator (supplier).

act:Functional Allocation1.1 (alternative)

traction
LossFlow:

traction
LossFlow:

«functionallyAllocated»
{allocatedTo= Traction

Detector}

Detect Loss of Traction

«functionallyAllocated»
{allocatedTo= Brake

Modulator}

Modulate Braking Force
190 SysML Specification v. 0.90 (Draft)

Figure C-15. Example of Optional User Representation: Functional Allocation represented via stereotyped Activity Partitions

Flow Allocation

Flow between activities can either be control or object flow. The following figures show concrete syntax for how object flow
is mapped to connectors on Activity Diagrams. Allocation of control flow is not specifically addressed in SysML, but may be
depicted using a «realizingActivityEdge» dependency with ItemFlow.

UML2 provides concrete syntax for InformationFlows (supertype of SysML ItemFlows) to be explictly associated with
ActivityEdges (representing ControlFlow or ObjectFlow) via the «realizingActivityEdge» dependency. UML2 also provides a
concrete syntax for InformationFlows to be explicitly associated with Connectors via the «realizingConnector» dependency.
Thus, through these ItemF.low related dependencies, ControlFlow and ObjectFlow may be related to Connectors. To this,
SysML provides the additional capability of allocating ObjectNodes directly to ItemProperties (Classifiers having a UML2
«itemProperty» dependency with ItemFlow). It is also recommeded (but not required) that when an ObjectNode is allocated to
an ItemProperty, both should be typed by a common Classifier having a «conveyedClassifier» dependency with the ItemFlow.

act:Functional Allocation1.2 (alternative)

traction
LossFlow:

«allocated»
:Traction Detector

«allocated»
:Brake Modulator

traction
LossFlow:Detect Loss of

Traction
Modulate

Braking Force
SysML Specification v. 0.90 (Draft) 191

Figure C-16. Allocation of ObjectFlow to ItemFlow - Activity diagram

Figure C-17. AlloctionReference for ObjectFlow to ItemFlow - Assembly diagram

Note that allocation of ObjectFlow to Connector is an Allocation of Usage, and does NOT imply any relation between any
defining class of ObjectFlows and any defining class of Connectors.

Allocation of ObjectNode to ItemProperty

The following figures illustrate an available mechanism for relating the objectNode from an activity diagram to the itemFlow
on an Assembly diagram. SysML::itemFlow is discussed in Chapter 18 AuxiliaryConstructs.

Common typing of objectNode and itemFlow is a very valuable concept, and recognizes that it is possible to represent the
same flow of information, energy, or matter in both activity and assembly models.

act:Flow Allocation1

tractionLossFlowDetect Loss of
Traction

Modulate
Braking Force

«flowAllocated»
 {allocatedTo=
modSignals}

asm:Flow Allocation1

Anti-Lock Controller

«flowAllocated»
{allocatedFrom=
Detect Loss of Traction}

:Traction Detector

«flowAllocated»
{allocatedFrom=

 Modulate Braking Force}

:Brake Modulator

modulator
Interface

modSignals

«flowAllocated»
{allocatedFrom=
tractionLossFlow}
192 SysML Specification v. 0.90 (Draft)

Figure C-18. ObjectNode allocatd to ItemProperty (AoU) - Activity diagram

Figure C-19. ObjectNode allocated to ItemProperty (AoU) - Assembly diagram.

Pin to Port Allocation

Pin to Port allocation is not addressed in this release of SysML.

C.2.3.5 Assembly to Assembly Allocation

This document leaves it to the user to define the criteria for “logical” and “physical” structure. It is assumed that, in the
general sense, both logical and physical representations will be depicted as assemblies, complete with ports, parts, and connec-
tors. This section simply provides an example of how SysML supports allocation between these two kinds of structures.

act:Flow Allocation2 - property compartment

Detect Loss of
Traction

Modulate
Braking Force

«flowAllocated»
{allocatedTo=
enableABS:
TractionMsg}

tractionLoss:Trac
tionMsg

asm:Flow Allocation2

Anti-Lock Controller

:Traction
Detector

:Brake
Modulator

modulator
Interface

modSignals

«flowAllocated»
{allocatedFrom=
tractionLoss:TractionMsg}

enableABS:TractionMsg
«itemProperty»
SysML Specification v. 0.90 (Draft) 193

The «allocatedTo» relation is used to relate logical assemblies to physcial assemblies, and logical connectors to physical
connectors. Physical assemblies which have logical assemblies allocated to them may be annotated using AlloctionReferences,
or AllocationCompartments. These are illustrated in the following figures.

Figure C-20. Allocation of Assembly-to-Assembly on Class Diagram (Allocation of Definition)

Note that in this example, the abstract nature of the logical connector “:modulator interface”, when being allocated to a
concrete physical architecture, must be allocated to two physical connectors “:J57 Cktr” and “:J27 Cktr”, as well as to the
physical part “:Cable A”.

Figure C-21. Allocation of Connector-to-Connector/Assembly on Assembly Diagram (Allocation of Usage)

cls:Structural Allocation1

«physical»
ABS

Assembly

«logical»
Traction
Detector

«structuralAllocation»

«structuralAllocation»«logical»
Brake

Modulator

«physical»
Modulation

Unit

«logical»
Anti-Lock
Controller

«physical»
Braking
System

asm:Structural Allocation2

«logical»
Anti-Lock Controller

:Traction
Detector

:Brake
Modulator

modulator
Interface:

«physical»
Braking System

:ABS
Assembly

:Modulation
Unit

J57 Cktr:«structuralAllocation»

:Cable A

J27 Cktr:

«structuralAllocation»
«structuralAllocation»
194 SysML Specification v. 0.90 (Draft)

Figure C-22. Depiction of Assembly-to-Assembly and Connector Allocation using AllocationReferences on Assembly
Diagram.

Figure C-23. Use of Allocation Compartments to Depict Assembly-to-Assembly Allocation, and Common Typing of Items to
reconcile flows.

asm:Structural Allocation3

«physical»
Braking System

:ABS
Assembly

:Modulation
Unit

:J57 Cktr

:Cable A

:J27 Cktr

«structurallyAllocated»
{allocatedFrom=
modulatorInterface}

«structurallyAllocated»
{allocatedFrom=
Traction Detector}

«structurallyAllocated»
{allocatedFrom=
Brake Modulator}

asm:Structural Allocation4

«physical»
Braking System

«structurallyAllocated»
{allocatedFrom=
Traction Detector}

«physical»
:ABS Assembly

«structurallyAllocated»
{allocatedFrom=
Brake Modulator}

«physical»
:Modulation Unit

«structurallyAllocated»
{allocatedFrom=
modulatorInterface}

«physical»
:Cable A

enableABS:
TractionMsg

enableABS:
TractionMsg

«structurallyAllocated»
{allocatedFrom=
modulatorInterface}

:J57 Cktr

«structurallyAllocated»
{allocatedFrom=
modulatorInterface}

:J27 Cktr
SysML Specification v. 0.90 (Draft) 195

C.2.3.6 Tabular Representation of Allocation

Some typical allocation tables may include:

Functional Allocation Table from function (Activity) to structure or (Class or Assembly)

Flow Allocation Table from ActivityEdge to ItemFlow (realizingActivityEdge association), ObjectNode to ItemProperty,
ItemProperty to ItemFlow (itemProperty association), and ItemFlow to Connector (realizingConnector association).

Structural Allocation Table from one structure (e.g. “logical” Assemblies, Parts, or Connectors) to another structure (e.g.
“physical” Assemblies, Parts, or Connectors).

Deployment Allocation Table from deployment sources such as software to deployment targets such as hardware.

C.3 Provided and Required Interfaces

C.3.1 Overview

This section describes an architecture modeling approach that supports the design of service request driven systems that use
provided and required interfaces. The main characteristic of this approach is that the internode and intranode communication is
based on message exchanges (service requests) rather than on the definition of data/control flows. The approach is UML-based

Table 6 Example Allocation Table

ID Allocation Type
(User Extension)

ElementType
AllocatedFro
m

ElementName
AllocatedFrom

ElementType
AllocatedTo

ElementName
AllocatedTo

1 Functional
Allocation

Activity Detect Loss of Traction Assembly Traction Detector

2 Functional
Allocation

Activity Modulate Braking Force Assembly Brake Modulator

3 Flow Allocation ObjectFlow tractionLossFlow Connector modulator interface

4 Flow Allocation ObjectFlow tractionLossFlow ItemFlow modSignals

5 Flow Allocation ObjectNode tractionLoss:TractionM
sg

ItemProperty enableABS:TractionMs
g

6 Structural Allocation «logical»
Assembly

Traction Detector «physical»
Assembly

ABS Assembly

7 Structural Allocation «logical»
Assembly

Brake Modulator «physical»
Assembly

Modulation Unit

8 Structural Allocation «logical»
Connector

modulator interface «physical»
Connector

J57 Cktr

8 Structural Allocation «logical»
Connector

modulator interface «physical»
Connector

J27 Cktr

8 Structural Allocation «logical»
Connector

modulator interface «physical»
Assembly

Cable A
196 SysML Specification v. 0.90 (Draft)

and uses the UML 2.0 notation for provided and required interfaces. In a modeling environment that supports both UML 2.0
and SysML, these elements can be used in combination with those of SysML, even though SysML currently does not include
provided and required interfaces in its compliance requirements for SysML Assemblies.

C.3.2 Principles

In the outlined approach, the system structure is described by means of composite structure diagrams, using blocks (in SysML,
assemblies and their parts) as basic structure elements and ports as “named connection points.”

There are two different kinds of ports (Figure C-24). Delegation or relay ports forward requests to other ports. Behavioral
ports are parts of the block that actually implements the service.

Each port can have provided and required interfaces. A provided interface (denoted by a lollipop symbol) specifies a set of
messages received at that port from elements outside the current block. A required interface (denoted by a socket symbol)
specifies a set of message sent from that port to elements outside the current block. Thus, by characterizing an interface as
required or provided the direction of the constituent messages at the port is defined. With regard to the naming of interfaces the
following convention will be used in this document:

i<ServiceProviderInterfaceNumber><ServiceProvider>

The mechanics of the service request-driven system modeling approach is shown in Figure C-25. The message exchange
between two blocks is visualized in the upper part of Figure C-25 by means of a sequence diagram. Service requests are sent as
events, and the actual provisions of those services are shown as reflexive operations ("messages to self") at the lifeline of the
receiving block. Both the service request messages and the associated service operations may have parameters. Typically,
parameters are added at a later stage, when details with regard to the respective services are known.

Figure C-24. Elements of a composite structure diagram.

System

BlockB

BlockB1 1

BlockB2 1

i1BlockB2

i1BlockB2

i2BlockB1

i2BlockB1

p1 p2

p1

i1BlockB1

p1

i1BlockB1

BlockA 1

p1

1

Behavioral Port

Delegation Port

i1BlockB1
SysML Specification v. 0.90 (Draft) 197

The resulting structure diagram is shown below in a sequence diagram. In the operation compartment of each block, the
received messages are listed as public (+) and the provided services are listed as private (-). Both blocks have a provided and
required interfaces.

C.3.3 Relation to DoDAF Views

The benefits of a service request-driven system modeling approach that uses provided and required interface becomes obvious
when specifying complex, network-centric, system-of-systems architectures. Military-defense system specifications fre-
quently must comply with the DoDAF (Department of Defense Architectural Framework) standard. Figure C-26 shows how

Figure C-25. Service Request-Driven System Modeling Approach.

System

B1 B1

ModeX

reqOperation3()

reqOperation2()

reqOperation4()

evSetMode(ModeX)

reqOperation1()
operation1()

operation2()

operation3()

operation4()

+ reqOperation2()
+ reqOperation4()
- operation2()
- operation4()

B1 1

i1B1

I1B2

+ evSetMode(ModeX)
+ reqOperation1()
+ reqOperation3()
- operation1()
- operation3()

B2 1

I1B2

i1B1

reqOperation2()
reqOperation4()

«Interface»
i1B1

evSetMode(ModeX)
reqOperation1()
reqOperation3()

«Interface»
i1B2
198 SysML Specification v. 0.90 (Draft)

provided and required interfaces may be used to define a systems-of-systems architecture for a DoDAF-compliant specifica-
tion.

The network specified consists of two nodes (N1, N2). Each node is decomposed into system components (N1 -> N1S1,
N1S2; N2 -> N2S1, N2S2). Additionally, the system component N1S2 is further decomposed into the subcomponents N1S21
and N1S22. The different parts are linked via ports. Delegation (relay) ports are port p1 of system component N1S1, port p1 of
node N1, and port p1 of node N2. All other ports are behavioral. For each port, the associated required and/or provided inter-
faces are shown. In this example, it is not relevant what the individual sent and received messages actually are.

The internodal operational information exchange matrix (DoDAF OV-3 view), as well as the internodal/intranodal, sys-
tem-to-system interface description (DoDAF SV-1, SV-6 view) can be derived directly from the structure diagram. Typically,
the information is documented by means of an N-Square (N2) diagram. In an N2 diagram the network nodes are arranged
along the vertical and horizontal axis. The node interfaces then are listed in the intersection compartment of respective col-
umns/rows. Table 7 and Table 8 show the N2 diagrams for the generic system-of-systems example.

Figure C-26. Generic system-of-systems example.

Table 7. Internodal Operational Information Exchange Matrix.

N1 N2

N1 i1N2S1
i1N2S2

N2 i1N1S1

N2 1

SystemOfSystems

N2S1

N2S2
i2N2S2

i1N1S1

i1N2S1 i2N2S1

p1 p2

p1 p2i1N2S1,
i1N2S2

i1N1S1

i1N2S1,
i1N2S2

N1S1

N1S2

N1S21

N1S22

i1N1S1

p1

p1

1

1

1

1

N1 1

i1N2S1,
i1N2S2

p1

i1N1S1

1

1 i2N2S1
p1p1

i1N2S2

i1N2S1

Target
Source
SysML Specification v. 0.90 (Draft) 199

A more detailed description can be achieved by replacing the interface names in the N2 diagrams with the assigned mes-
sages and associated parameters. N2 diagrams can be generated from the data in the model repository.

Table 8. Internodal/Intranodal System-to-System Interface Description.

N1S1 N1S21 N2S22 N2S1 N2S2

N1S1 — — — —

N1S21 — — — i1N1S2

N1S22 — — i1N2S1 —

N2S1 — — — —

N2S2 i1N1S1 — — i2N2S1

Target
Source
200 SysML Specification v. 0.90 (Draft)

Appendix D.Model Libraries

Editorial Comment: Guidelines for model library definitions are still being established.

D.1 Requirements Model Library

D.1.1 Requirement Taxonomies

Requirement taxononomies can be created by specializing SysML requirement stereotypes. Typical examples may
include operational, behavioral, interface, control, performance, physical, storage, design constraints, and other specialized
requirements for reliability, safety, etc..

Specific constraints between subclasses of requirements and SysML model elements can be imposed by the stereotype.
For example one can enforce that a behavioral requirement shall be satisfied by SysML activities or functions. Similar con-
straints can be imposed by the other subclasses of requirements.

Table 1 Example Requirements Taxonomy

Requirement subclass Constraints

Operational Satisfied by an activity, operation, or method.

Functional Satisfied by an activity or method.

Interface Satisfied by a connector, port and itemflow.

Performance Satisfied by one or more performance properties and associated parametric
relationship.

Activation/deactivation Satisfied by a state machine, activity, or sequence diagram.

Storage Satisfied by any part that represents a stored item.

Physical Satisfied by one or more physical properties and associated parametric
relationships or a geometric model.

Design constraint Satisfied by any white box model element such as parts, ports, connectors,
or implementations of black box behavior.

Specialized Satisfied by any element modeling the specialized requirement.

Measure of Effectivness Satisfied by class attribute reporting a simulated/measured performance of
a system.
SysML Specification v. 0.90 (Draft) 201

D.1.2 Extending Requirement Attributes

The standard SysML Requirement stereotype specifies minimal attributes for flexibility reasons. We give below an exam-
ple of stereotype extension for critical requirement. This stereotype provides an attributes for the criticality of the require-
ment.

Figure D-1. Example of critical requirement stereotype.

D.1.3 Extending Requirement Relationships

In Figure D-2 we show some examples of relationships between requirements for the generic «satisfy» relationship and
the «trace» relationship. These stereotype extensions are given as examples and are non-normative.

Figure D-2. Examples of relationships between requirements.

D.1.4 Alignment with UML Testing Profile

The UML Testing Profile provides a framework for modeling Test Cases within the extended framework of Test Suites.
The scope of the testing profile goes beyond the ones of the UML for System Engineering RFP. Nevertheless, the example of
the stereotype extension below provides a means for aligning the SysML TestCase stereotype with the one in the UML Testing
Profile. Note that the enumeration UMLTestingProfile::Verdict is only given here for information about the set of possible
tagged values for the attribute verdict.

<<stereotype>>
CriticalRequirement

<<stereotype>>
Requirement

criticality : String

<<stereotype>>
SysML::satisfy

<<stereotype>>
SysML::constrain

<<stereotype>>
UML::trace

<<stereotype>>
SysML::flowdown
202 SysML Specification v. 0.90 (Draft)

Figure D-3. Alignment of the SysML Test Case stereotype with the UML Testing Profile.

<<stereotype>>
UMLTestingProfile::TestCase

<<stereotype>>
TestCase

Verdict verdict

<<enumeration>>
UMLTestingProfile::Verdict

pass
fail
inconclusive
error
SysML Specification v. 0.90 (Draft) 203

D.2 SI Units Model Library
The elements of the model library SIUnits instantiate the Unit and Dimension classes of the Quantities model library from the
Auxiliary chapter.

Figure D-4.

«modelLibrary»
SIUnits

symbol="m"

meter:Unit

symbol="L"

length:Dimension

symbol="kg"

kilogram:Unit

symbol="M"

mass:Dimension

symbol="s"

second:Unit

symbol="T"

time:Dimension

symbol="A"

ampere:Unit

symbol="I"

electricCurrent:Dimension

symbol="K"

kelvin:Unit

symbol="Theta"

temperature:Dimension

symbol="cd"

candela:Unit

symbol="J"

luminousIntensity:Dimension

symbol="n"

mole:Unit
204 SysML Specification v. 0.90 (Draft)

D.3 Distributions Model Library

D.3.1 Distribution

Description

Abstract base class for distribution definitions.

Diagram extensions

The value of a concrete distribution definition is shown as follows:

’(’<name of distribution definition>’)’’(’<property name>’=’<property value>
[’,’ <property name>’=’<property value>]*’)’

It is allowed to hide properties.

Figure D-5. Standard distributions defined in model library.

«distributionDefinition»
Uniform

{constant probability
between min and max}

«distributionDefinition»
Interval

{unknown probability
between min and max}

min: Quantity
max: Quantity

«distributionDefinition»
BasicInterval

{value between min
and max inclusive} mean: Quantity

standardDeviation: Quantity

«distributionDefinition»
Normal

«modelLibrary»
DistributionDefinitions

«distributionResult» value: Quantity

«distributionDefinition»
Distribution
SysML Specification v. 0.90 (Draft) 205

206 SysML Specification v. 0.90 (Draft)

Appendix E. Requirements Traceability
This appendix describes the requirements tracability matrix (RTM). The RTM shows how SysML satisfies the
requirements in Sections 6.5 (Mandatory) and 6.6 (Optional) of the UML for SE RFP. The matrix includes columns that
correspond to those identified in the first paragraph of Section 6.5 of the RFP and are restated here::

• a) The UML for SE requirement number.

• b) The UML for SE requirement name (or other letter designator). Note: The reader should refer to the UML for SE RFP
for the specific text of the requirement, since there was inadequate room in:: the table to repeat it here.

• c) Describes whether the proposed solution is a full or partial satisfaction of the requirement, or whether there is no solu-
tion provided.

• d) Adescription of how SysML addresses the requirement. Note: In some cases, there may be other SysML solutions to
satsify the requirement, but the intent was to describe at least one solution.

• e) The specific UML and SysML metaclasses that address the requirement.

• f) Reference to the chapter in the SysML specification. Note: The reference to a chapter may require reference to a corre-
sponding chapter in the UML specification. For example, when the classes chapter is referenced, this may include a combina-
tion of the SysML classes chapter and the UML classes chapter.

Editorial Comment: The concrete syntax that supports the solution can be found in the Diagram Element tables of
the chapter referenced in f) above. Representative examples can be found in the same chapter referenced, as well
as in the Sample Problem appendix.
SysML Specification v. 0.90 (Draft) 207

Table 1 Requirement Traceability matrix

UML for
SE Req't

#

Requirement
name

Compl
(Y/N,

Partial)

Requirement Satsifaction Metaclass Exten-
sion

SysML
Diagram
Chapter

Ver-
sion

6.5 Mandatory
Requirements

6.5.1 Structure Structure diagrams include class
and assembly diagrams

Structure

6.5.1.1 System hierar-
chy

Y Class aggregation/composition
and parts in assembly diagrams
are the primary mechanisms for
depicting hierarchy.

UML::Class,
UML::Association,
SysML::Assembly,
UML::Property

Class,
Assembly

1.0

a. Subsystem
(logical or
physical)

 Y Typically represented by a set of
logical or physical parts in an
assembly diagram that realize
one or more system operations.
The corresponding sequence
diagram and swim lane diagram
can represent a hybrid of struc-
ture and behavior.

UML::Class,
SysML::Assembly,
UML::Property

Class,
Assembly

1.0

b. Hardware
(i.e. electrical,
mechanical,
optical)

 Y Represented by a class, assem-
bly, or part.

UML::Class,
SysML::Assembly,
UML::Property

Class,
Assembly

1.0

c. Software Y Represented by a class, assem-
bly or part or a UML component.

UML::Class,
UML::Component,
SysML::Assembly,
UML::Property

Class,
Assembly

1.0

d. Data Y Represented by a class, assem-
bly, or part. Refer to input/output
requirements in 6.5.2.1.1 and
6.5.2.5 for data flows.

UML::Class,
SysML::Assembly,
UML::Property

Class,
Assembly

1.0

e. Manual pro-
cedure

 Y Represented by a class, assem-
bly, or part. Can also be repre-
sented by the standard UML
stereotype <<document>>.

UML::Class,
SysML::Assembly,
UML::Property,
UML::Document

Class,
Assembly

1.0

f. User/person Y Represented by a class, assem-
bly, or part. External users are
also represented as actors in a
use case diagram.

UML::Class,
SysML::Assembly,
UML::Property

Class,
Assembly

1.0

g. Facility Y Represented by a class, assem-
bly, or part.

UML::Class,
SysML::Assembly,
UML::Property

Class,
Assembly

1.0
208 SysML Specification v. 0.90 (Draft)

h. Natural
object

 Y Represented by a class, assem-
bly, or part.

UML::Class,
SysML::Assembly,
UML::Property

Class,
Assembly

1.0

i. Node Y Represented by a package con-
taining a set of packageable ele-
ments based on some
partitioning criteria.

 UML::Package Class 1.0

6.5.1.2 Environment Y Environment is one or more enti-
ties that are external to the sys-
tem of interest and can be
represented as a class or assem-
bly or a stereotype of a classifier.
Also, represented as actors in
use cases.

UML::Class,
SysML::Assembly,
UML::Property,
UML::Classifier

Class,
Assembly,
Use Case

1.0

6.5.1.3 System inter-
connection

Assembly diagram shows con-
nections using parts, ports, and
connectors. Class diagram with
associations can depict commu-
nication paths.

UML::Class,
SysML::Assembly

Class,
Assembly

1.0

6.5.1.3.1 Port Y A port is a part that is on the
boundary of another part or
assembly that supports interac-
tions with its environment.

UML::Port,
UML::Property

Assembly 1.0

6.5.1.3.2 System bound-
ary

Partial The set of ports that represent
the interaction points for an
assembly or part.

UML::Port,
UML::Property

Assembly 1.0

6.5.1.3.3 Connection Y A connector binds two ports to
support interconnection. A con-
nector can be typed by an asso-
ciation. A logical connector can
be allocated to a more complex
physical path depicting a set of
parts, ports, and connectors
(refer to allocation). A connector
can be decomposed to connect
nested ports.

UML::Association,
UML::Connector,
SysML::NestedCon-
nectorEnd
UML::Port

Class,
Assembly

1.0
SysML Specification v. 0.90 (Draft) 209

6.5.1.4 Deployment of
components to
nodes

Y A subtype of an allocation rela-
tionship called deployment allo-
cation between named elements
that can correspond to different
types of components. This a
more abstract form of deploy-
ment than UML deployment.
Note: Refer to allocation relation-
ship.

SysML::Allocation,
SysML::Allocated,
UML::NamedEle-
ment

Allocation,
Special
Usages
Appendix

1.0

a. Y Software part or assembly
deployed to a hardware part or
assembly (processor or storage
device).

SysML::Allocation,
SysML::Assembly,
UML::Property

Allocation,
Special
Usages
Appendix

1.0

b. Y Generalized deployment relation-
ship between a deployed ele-
ment and its host.

SysML::Allocation,
SysML::Assembly,
UML::Property

Allocation,
Special
Usages
Appendix

1.0

c Y Deployed element and host can
be decomposed using assem-
blies and parts.

SysML::Assembly,
UML::Property

Allocation 1.0

 6.5.2 Behavior Behavior diagrams include activ-
ity, interaction (sequence, tim-
ing), and state machine
diagrams. Communication dia-
grams and interaction overview
diagrams are interaction dia-
grams that are not included in
SysML. Use case diagrams are
also viewed as a behavior dia-
gram in that they represent the
functionality in terms of the
usages of the system, but do not
depict temporal relationships
and associated control flow or
input/output flow.

Behavior Diagrams Behavior

6.5.2.1 Functional
Transforma-
tion of Inputs to
Outputs

 A behavior is the generalized
form of a function with inputs and
output parameters. Activity is a
subclass of behavior.

UML::Behavior Activity
210 SysML Specification v. 0.90 (Draft)

6.5.2.1.1 Input/Output Y Inputs and outputs can be repre-
sented as object nodes flowing
between activity nodes in an
activity diagram, parameters of
activities, and as itemProperties
that flow between parts in an
assembly diagram. The item-
Properties are associated with an
ItemFlow.

UML::Class used as
the type of
UML::Parameter,
UML::ObjectNode,
or UML::Property,
SysML::ItemFlow

Activity,
Auxiliary

1.0

a Y Object nodes, parameters and
item properties are typed by clas-
sifiers that can have properties.

UML::Class,
UML::ObjectNode,
UML::Parameter,
UML::Property

Activity,
Auxiliary

1.0

b Y The classifiers that represent the
things that flow (type of object
node, parameter, and itemProp-
erty) can be decomposed and
specialized.

UML::Classifier Activity,
Auxiliary,
Class,

1.0

c Y "ItemFlows" associate the things
that flow with the connectors that
bind the ports or the associations
between classes. The parame-
ters and object nodes are bound
to the corresponding activities
and actions.

SysML::ItemFlow Auxiliary,
Assembly,
Class

1.0

6.5.2.1.2 System store Partial Stored items can be represented
as parts of an assembly or class,
and also represented in an activ-
ity diagram as object nodes or
central buffer nodes.

UML::Classifier,
UML::Property,
UML::ObjectNode
UML::CentralBuffer-
Node

Class,
Assembly;
Activity,
Auxiliary,

1.0

a Partial Object nodes in an activity dia-
gram can represent depletable
stores, and a data store node
can represent non-depletable
stores.

UML::ObjectNode,
UML::DataStoreN-
ode

Activity 1.0

b Y A stored item can be the same
type of classifier as an input or
output in both an assembly dia-
gram and an activity diagram.
The classifier supports different
roles (store vs. flow).

UML::Classifier Class,
Assembly,
Activity

1.0
SysML Specification v. 0.90 (Draft) 211

6.5.2.1.3 Function Y Activity specifies a generic sub-
class of behavior that is used to
represent a function definition in
activity diagrams, sequence dia-
grams, and state-machine dia-
grams. Activities contain
CallBehaviorActions that call
(invoke) other activities to sup-
port execution of the generic
behaviors.

UML::Activity Activity,
Sequence,

State
Machine

1.0

a Y Behaviors and the associated
parameters are named (i.e.
name of activity and activity
parameter node).

UML::Behavior Activity,
Sequence,
State
Machine

1.0

b Y The action semantics define dif-
ferent types of actions that
include CreateObject, Destroy-
Object, ReadStructuralFeature
(monitor), and WriteStructureal-
Feature (update). A SysML
NullTransformation has also
been added. A CallBehavior
action is a generalized action
that can call any behavior (activ-
ity, interaction, state).

UML::CreateObjec-
tAction, UML::Dele-
teObjectAction, the
various object modi-
fication actions in
UML, monitoring
with UML::Accept-
EventAction, and
SysML::NullTrans-
formation.

Activity,
Sequence,
State
Machine

1.0

c Y The object nodes (pins) bind
input and output parameters to
actions.

UML::ObjectNode,
UML::Pin

Activity 1.0

d Y The queing semantics for object
nodes are specified. The default
queing is FIFO, but other forms
of queing includeing LIFO,
ordered, and unordered as
defined by the enumeration for
ObjectNodeKind.

UML::Behavior,
SysML::InputPin,
SysML::ObjectNode

Activity 1.0
212 SysML Specification v. 0.90 (Draft)

e Partial A resource stereotype applied to
a constraint has a property that
refers to the class that represents
the resource. Resource con-
straints to support an execution
can also be specified by Precon-
ditions and PostConditions. The
constraints can apply to
resources that are generated,
consumed, produced, and
released, such as inputs and out-
puts, or the availability of mem-
ory or CPU. The constraints
imposed on the resources can be
further modeled using parametric
diagrams.

UML::Constraint,
SysML::Resource-
Constraint,
SysML::Parametric-
Constraint

Activity,
Parametric

1.0

f Y Refer to c UML::ObjectFlow,
UML::Pin

Activity 1.0

g. Y An activity can be decomposed
into lower level actions that
invoke other activities.

UML::Activity,
UML::CallBehavior-
Action, UML::Activi-
tyParameterNode,
UML::ObjectFlow,
UML:: Pin

Activity,
Class

1.0

h. Y An action has control inputs that
can enable the exectuion of a
function, and a control value
input from a control operator that
can both enable or disable an
exectuion of a function. An exe-
cution of a function can also be
terminated when it is enclosed in
an interruptile region. Alterna-
tively, state machine diagrams
can be used to enable or disable
execution upon transition events.

UML::Action,
UML::Interrupt-
ibleActivityRegion,
SysML::Con-
trolValue,
UML::State

Activity,
State
Machine

1.0

i Y A computational expression can
be used to specify the behavior
(i.e. activity) that is invoked by an
action or an action that repre-
sents a primitive function such as
an arithmetic expression. Spe-
cific math expressions may be
included in a math model library.

UML::Activity,
UML::Action

Activity,
Sequence,
State
Machine

1.0
SysML Specification v. 0.90 (Draft) 213

j Y A continous or discrete rate ste-
reotype can be applied to inputs
and outputs. Inputs and outputs
are discrete by default. A contin-
uous input or output is an input or
output whose value can change
in infinitely small increments of
time. An activity can accept the
continuous inputs and provide
continuous ouputs while execut-
ing if the inputs and outputs are
also streaming.

SysML::Rate
SysML::Continous,
SysML::Discrete
UML::Parameter
(isStream=Value)

Activity,
State
Machine

1.0

k Partial Different actions can invoke con-
current executions of the same
generalized behavior. Actions
can have multiplicity.

UML::Behavior,
UML::Action

Activity,
Class

1.0

6.5.2.2 Function acti-
vation/deacti-
vation

Activity,
Sequence,
State
Machine

1.0

6.5.2.2.1 Control input Y Control flows in activity dia-
grams provide the control input.
Control flow is represented in
state machine diagrams by a
transitions which activate states
and in sequence diagrams by the
passing of messages.

UML::ActivityEdge,
UML::ControlFlow,
UML::Transition,
UML::Message,
SysML::Con-
trolValue

Activity,
Sequence,
State
Machine

1.0

a Y Multiple control flows in an activ-
ity diagram that are input to a sin-
gle activity node (i.e. action) are
assumed to be "anded" together.

SysML::Con-
trolValue,
SysML::Input-
Pin.isControl=true
for control queuing

Activity 1.0

b Y Control inputs are discrete val-
ued inputs that can enable or dis-
able an activity node.

SysML::Con-
trolValue

Activity 1.0

c Y In activity diagrams, the activity
is invoked (enabled) when a
token is received by the calling
action. This includes tokens from
all mandatory inputs and control
inputs.

UML::Action,
UML::ControlFlow,
UML::ActivityEdge

Activity 1.0
214 SysML Specification v. 0.90 (Draft)

d Y In activity diagrams, a control
operator can produce an output
control value to disable the exe-
cution of an activity. An action
enclosed within an interruptible
region also can disable the exe-
cution of an activity. In state
machine diagrams, transition
events can disable the actions in
a state.

UML::Action,
UML::Interrupt-
ibleActivityRegion,
SysML::Con-
trolValue,
UML::State

Activity,
State
Machine

1.0

e Y An executing activity with non-
streaming inputs and outputs ter-
minates when it completes its
transformation and produces an
output value. An executing activ-
ity with continuous streaming
inputs will terminate when it
receives a disable from a control
value and/or a signal that termi-
nates the actions within an inter-
ruptible region. A
TimeExpression can be specified
in a control operator or can signal
a termination in an interruptible
region. An activity can also be
terminated based on events,
including timeout events, on a
transition in a state machine dia-
gram. In state machine dia-
grams, completion events occur
upon completion of an activity.

UML::Activity,
UML::Interrupt-
ibleActivityRegion,
SysML Con-
trolValue,
UML::TimeExpres-
sion, UML::State

Activity,
State
Machine

1.0

f Y The enabling of actions without
explicit control flows as inputs
are enabled based on the control
associated with its inputs.

UML::Action,
UML::ObjectNode

Activity 1.0

g Y A control flow connects the con-
trol inputs from one activity node
to another. The control input can
also be the output control value
of a control operator.

SysML::Con-
trolValue,
UML::Parameter,
UML::ControlFlow

Activity 1.0

6.5.2.2.2 Control opera-
tor

 Y A control operator provides the
mechanism apply control logic to
enable and disable activity
nodes.

SysML::ControlOp-
erator, SysML::Con-
trolValue

Activity 1.0
SysML Specification v. 0.90 (Draft) 215

a Y Control Nodes such as joins,
forks, etc provide capability to
activate activity nodes based on
"and" and "or" logic. A SysML
Control Operator provides the
additional capability to disable an
activity node.

UML::ControlNode,
SysML::ControlOp-
erator, SysML::Con-
trolValue,
UML::Parameter

Activity 1.0

b Y A join specification can be used
to specify arbitrarily complex
logic for enabling an activity
node. A control operator can also
be used to specify complex logic
for enabling and disabling an
activity node.

 UML::JoinNode
with join specifica-
tion, UML::Parame-
ter,
SysML::ControlOp-
erator, SysML::Con-
trolValue

Activity 1.0

c Y The control nodes identified
below provide the basic control
logic for enabling activity nodes.
Note: multi exit functions are
supported by parameter sets.
Also, Interaction Operators pro-
vide similar logic in Sequence
Diagrams.

UML::ControlNode,
UML::InteractionOp-
erator

Activity,
Sequence

1.0

c1 Y Decision nodes in activity dia-
grams support selection. The
"alt" Interaction Operator sup-
ports selection in sequence dia-
grams.

UML::Decision-
Node, UML::Interac-
tionOperator.Alt

Activity,
Sequence

1.0

c2 Y Forks in activity diagrams sup-
port a single input flow generat-
ing multiple concurrent output
flows. The “par” Interaction Oper-
ator supports concurrent mes-
sage flow in Sequence
Diagrams.

UML::Fork,
UML::InteractionOp-
erator.par

Activity,
Sequence

1.0

c3 Y A join defines the “anding” of
multiple flows together resulting
in a single output flow.

UML::Join Activity 1.0

c4 Y Merge supports multiple input
flows resulting in a single output
flow.

UML::Merge Activity 1.0

c5 Y Decision and loop nodes sup-
port iteration and looping. The
“loop” Interaction Operator sup-
ports loops in sequence dia-
grams.

UML::Decision-
Node, UML::LoopN-
ode,
InteractionOpera-
tor.loop

Activity,
Sequence

1.0
216 SysML Specification v. 0.90 (Draft)

c6 N

6.5.2.2.3 Events and
conditions

Partial Triggers and constraints as
guards provide the mechanism
for modeling events and condi-
tions.

Activity,
Sequence,
State
Machine

1.0

a Partial A trigger can be used to specify
an event. Events can be associ-
ated with control flows in activity
diagrams, transitions in state
machine diagrams, and sending
and receiving of messages in
sequence diagrams.

UML:: Trigger,
UML::AcceptEven-
tAction including
UML::TimeTrigger,
UML::EventOc-
curence in Interac-
tions,Note: Failure
event can be result
in variouts types of
actions that termi-
nate an Interrupt-
ible Region in
Activiites, etc.

Activity,
Sequence,
State
Machine

1.0

b Y Refer to a) above UML::ActivityEdge,
UML::Trigger

Activity,
Sequence,
State
Machine,
Timing

1.0

c Y Conditions can be specified as
constraints that define guards to
control execution of behaviors.

UML::Constraint
(guard)

Activity,
Sequence,
State
Machine,
Timing

1.0

6.5.2.3 Function-
based behav-
ior

Y Activity diagrams provide the
capability to model function
based behavior.

UML:: Activity Activity 1.0

6.5.2.4 State-based
behavior

State machine diagrams provide
the capability to model state
based behavior with the specific
modeling constructs indicated.
Note 2 response: Activities are
common to each type of behavior
including both function based
and state based. Note 3
response: A state is defined
based on some invariant being
true. The invariant can include
reference to certain property val-
ues.

UML::StateMachine State
Machine

1.0
SysML Specification v. 0.90 (Draft) 217

a Y State UML::State State
Machine

1.0

b Y Simple state UML::State,
isSimple=True

State
Machine

1.0

c Y Composite states can contain
one region or two or more
orthogonal (concurrent) regions,
each with one or more mutually
exclusive disjoint states

UML::State
isComposite=True

State
Machine

1.0

d Y Transitions between states which
are triggered by events with
guard conditions.

UML::Transition,
UML::Trigger

State
Machine

1.0

e Y Transition within a composite
state

UML::Transition
(TransitionK-
ind=Internal)

State
Machine

1.0

f Y Pseudo states include joins,
forks and choice

UML::PseudoState State
Machine

1.0

g Y Transitions between states which
are triggered by events with
guard conditions.

UML::Activity State
Machine

1.0

h Y Entry, exit, doActivities are per-
formed upon entry or exit from a
state or while in a state.

UML::Activity State
Machine

1.0

i Y State machine semantics define
the ordering of actions that are
completed when exiting a com-
posite state (refer to UML transi-
tion semantics). When a
composite state is exited, the exit
actions are executed beginning
with the most nested state.

UML::State (Note:
refer to semantics)

State
Machine

1.0

j Y Entry and exit actions must be
completed prior to exiting a state.
A doActivity does not need to be
completed to execute.

UML::State (Note:
refer to semantics)

State
Machine

1.0

k Y Send and receive signals can be
sent via actions to interact with
other objects.

UML::SendSigna-
lAction

State
Machine

1.0
218 SysML Specification v. 0.90 (Draft)

l Partial The failure and/or exception
states are user defined and have
no uniquely defined representa-
tion. The use of exit points on
states can be used to exit the
state when a failure event
occurs.

UML::State State
Machine

1.0

6.5.2.4.1 Activation time Y The interval of time that an activ-
ity or state is active can be mod-
eled by a UML Time Trigger or
Time Interval and corresponding
Time Expression (refer to UML
trigger and interval notation). A
timing diagram can be used to
model the time associated with
the occurence of events, such as
state changes, or changes in
property values.

UML::SimpleTime
package

Activity,
Interaction
(Timing
Diagram),
State
Machine

1.0

6.5.2.5 Allocation of
behavior to
systems

Y An allocation relationship pro-
vides a genearlized capability to
allocate one model element to
another including the capability
to allocate behavior to system
structure (assemblies).

SysML::Allocation,
SysML::Allocated,
UML::NamedEle-
ment

Allocation,
Special
Usages
Appendix

1.0

a Y In general, behaviors such as
activities, interactions, and state
machines are owned by a
Behaviored Classifier which can
correspond to an assembly. The
SysML Allocation relationship
can be used to explicitly allocate
activities to assemblies. Alterna-
tively, activity partitions (swim
lanes) can be used to allocate
the action and/or activity to a part
and/or assembly.

UML::Behaviored-
Classifier and
UML::Behavior
(owned behavior) -
Refer to UML Com-
mon Behaviors,
SysML::Allocation,
SysML::Allocated-
Partition

Allocation,
Special
Usages
Appendix

1.0

b Partial An object node in an activity dia-
gram can be allocated to an item
that flows in an assembly dia-
gram using an allocation relation-
ship. Note: the object node is
typed by the same classifier as
the item that flows. See req't
6.5.2.1.1.

UML::Class (type of
ObjectNode to type
of ItemProperty),
UML::ObjectNode,
UML::Property

Allocation,
Special
Usages
Appendix,
Auxiliary
(Item
Flows)

1.0

 6.5.3 Property

6.5.3.1 Property type Y Primitive types provide the capa-
bility to model the different types
of properties.

UML:: Primitive-
Type, SysML::Primi-
tiveType

Auxiliary 1.0
SysML Specification v. 0.90 (Draft) 219

a Y Primitive type. UML::Integer Auxiliary

b Y Primitive type. UML::Boolean Auxiliary

c Y Primitive type. UML::Enumeration Auxiliary

d Y Primitive type. UML::String Auxiliary

e Y Primitive type. SysML::Real Auxiliary

f Y Data type. UML::Complex Auxiliary

g Y Composite data type made up of
primitive types.

Refer to a-f

h Y Composite data type made up of
primitive types.

Refer to a-f

6.5.3.2 Property value Y Auxiliary 1.0

a Y Property can be typed by a quan-
tity which has a value.

UML::Property,
SysML::Quantity

Paramet-
ric, Auxil-
iary

1.0

b Y A quantity can include units for
its values. The units can relate a
value to a dimension suchas
length.

SysML::Unit Auxiliary,
Model
Library

1.0

c Y A distributed quantity is a quan-
tity with an associated probability
distribution on its values.

SysML::Distribut-
edQuantity,
SysML::Distribution-
Definition,
SysML::Distribution-
Result

Auxiliary,
Model
Library

1.0

d Y Source data can be defined via
an attached comment to the
property.

UML::Comment UML Class 1.0

e Y Reference data can be via an
attached comment to the prop-
erty.

UML::Comment UML Class 1.0

6.5.3.3 Property asso-
ciation

A property can be a feature of
any classifier.

1.0

a Y Assemblies, parts of assem-
blies, or items that flow (classifi-
ers) can have (or reference)
properties.

UML::Class,
SysML::Assembly,
UML::Property

Class,
Assembly

1.0

b Y A function (activity) can have
properties since it is a class

UML::Activity Class,
Activity

1.0
220 SysML Specification v. 0.90 (Draft)

c N An event is specified by a trigger
which is an element. The ele-
ment does not have properties.A
signal which is sent upon the
occurrence of the event can have
properties.

d Y A property can be related to
other properties through a para-
metric constraint.

SysML::ParamCon-
straint, UML::Prop-
erty

Parametric 1.0

6.5.3.4 Time property Y Time can be treated as a prop-
erty, typed by a Real that can
represent either continuous or
discrete time. Time ultimately
derives from clocks, which may
be continuous or discrete. Clocks
will have a property that can be
connected, via a property binding
to a parametric constraint usage.
Time durations, start and stop
times, etc can be modeled using
the UML time model for time trig-
gers, time expressions, inter-
vals, and durations. Note: More
elaborate models of time and
clocks can be found in the UML
schedulability, peformance, and
time profile.

UML::Property,
SysML::ParamCon-
straint, UML::Sim-
pleTimePackage

Paramet-
ric, Interac-
tions
(Timing)

1.0

6.5.3.5 Parametric
model

 Y The parametric diagram supports
modeling of parameters.

SysML::ParamCon-
straint,
UML::Property,
UML::Connector,
SysML::NestedCon-
nectorEnd
UML::Port

1.0

a Y Parametric constraints specify
the mathematical relationships
among properties.

SysML::ParamCon-
straint

Parametric 1.0

b Partial Mathematical and logical expres-
sions can be defined in SysML in
a reference language, but there
is not interpreter built into
SysML. The range of values can
be specified via quantities and
probability distributions per
6.5.3.2a-c.

SysML::ParamCon-
straint

Parametric 1.0
SysML Specification v. 0.90 (Draft) 221

c Y The reference language for inter-
preting the parametric constraint
can be included as an attached
comment or in the compartment
along with the expression.

SysML::ParamCon-
straint
UML::Comment

Parametric 1.0

6.5.3.6 Probe Partial A probe can be an assembly that
types a part that is connected to
a port. No specific mechanization
has been provided. In the testing
profile, there is a mechanism to
capture data and create actions
in response to the data. This will
be investigated in a future ver-
sion of SysML.

UML::Class,
SysML::Assembly
UML::Property

Assembly 1.0

 6.5.4 Requirement Requirement Y

6.5.4.1 Requirement
specification

Y A requirement is a stertotype of a
class in SysML. The various sub-
types of requirement are speci-
fied as subclasses of the the
requirement stereotype and can
include specific propeties and
constraints on what model ele-
ments can satisfy the subclass of
requirement. A sample set of
subclasses of requirements are
included in the Model Library
Appendix.

SysML::Require-
ment

Require-
ment,
Model
Library

1.0

Note 1 Y Values and tolerances can be
specified as part of the text prop-
erty or via property values and
distributions per 6.5.3.2a-c.

Requirement.text,
SysML::Quantity

Require-
ment

1.0

Note 2 Partial There is no explicit subclass of
requirement as a stakeholder
need, but a requirement can be
named or subclassed as “stake-
holder need”.

SysML::Require-
ment

Require-
ment,
Model
Library

1.0

Note 3 Partial User defined requirements can
be added via subclasses to spec-
ify any type of life cycle require-
ment of interest to the modeler.

SysML::Require-
ment

Require-
ment,
Model
Library

1.0

a Y Operational requirement SysML::Operation-
alRequirement

Require-
ment,
Model
Library

1.0

b Y Functional requirement SysML::Functional-
Requirement

Require-
ment,
Model
Library

1.0
222 SysML Specification v. 0.90 (Draft)

c Y Interface requirement SysML::Interfac-
eRequirement

Require-
ment,
Model
Library

1.0

d Y Performance requirement SysML::Perfor-
manceRequirement

Require-
ment,
Model
Library

1.0

e Y Activation/Deactivation (Control)
requirement

SysML::Activation/
DeactivationRe-
quirement

Require-
ment,
Model
Library

1.0

f Y Storage requirement SysML::StorageRe-
quirement

Require-
ment,
Model
Library

1.0

g Y Physical requirement SysML::PhysicalRe-
quirement

Require-
ment,
Model
Library

1.0

h Y Design constraint SysML::DesignCon-
straint

Require-
ment,
Model
Library

1.0

i Y Specialized requirement SysML::Specialize-
dRequirement

Require-
ment,
Model
Library

1.0

j Y Measure of effectiveness SysML::MeasureOf-
Effectiveness

Require-
ment,
Model
Library

1.0

6.5.4.2 Requirement
properties

Y A requirement includes default
properties for id and text. Other
properties can be added via ste-
reotype properties.

SysML::Require-
ment.reqProperty

Require-
ment,
Model
Library

1.0

6.5.4.3 Requirement
relationships

 Y The requirement relationships
include trace and their special-
ization for derive, satsify,and ver-
ify. The trace relationship can be
futher specialized. Containment
is the relationship to decompose
requirements.

UML::Trace Require-
ment

1.0

a Y A derive relationship,which is a
stereotype of a trace, relates a
derived (target) requirement to a
source requirement.

SysML::Derive Require-
ment,
Model
Library

1.0
SysML Specification v. 0.90 (Draft) 223

b Y A requirement satisfy relation-
ship, which is a stereotype of a
trace, relates the model elements
(i.e. the design) that satisfy the
requirement.

SysML::Satisfy Require-
ment,
Model
Library

1.0

c Y Goals, capabilities, or usages of
systems are often expressed
using use cases. Subgoals can
be represented using the include
or composition relationship
between use cases. Require-
ments can be nested into lower
level requirements using the con-
tainment relationship or trace
relationship.

UML:UseCase,
UML::Include,
SysML::Require-
ment, UML::Trace

Require-
ment, Use
Case

1.0

6.5.4.4 Problem N 1.x

6.5.4.5 Problem asso-
ciation

N 1.x

6.5.4.6 Problem cause N 1.x

6.5.5 Verification Partial The following responses to the
Verification requirements will
include references to the Testing
Profile [OMG Adopted Specifica-
tion
ptc/03-08-03] which is not cur-
rently part of SysML but is
intended to be evaluated for inte-
gration with version 1.1 of SysML
[refer to white paper on integrat-
ing SysML with Testing Profile]

6.5.5.1 Verification
Process
224 SysML Specification v. 0.90 (Draft)

a Y The SysML verify relationship
between one or more system
requirements and one or more
test cases represents the method
for verifying that a system design
satisfies its requirements. A veri-
fied system design implies that
the system will satisfy its require-
ments if the component parts sat-
isfy their allocated requirements.
An alternative approach to cap-
ture the verify relationship is to
associate a test case with a sat-
isfy relationship using the ratio-
nale.

SysML::Verify,
SysML::Rationale

Require-
ment

1.0

b Y The SysML verify relationship
between one or more require-
ment(s) and one or more test
case(s) is used to verify that the
implemented system design
instances satisfy their require-
ments. Alternativly, a reference
to a TestCase using
SysML:Rationale may be
attached to a satisfy relationship.

SysML::Verify
SysML::Rationale

Require-
ment

1.0

c Y A trace relationship between the
requirement being validated and
the higer level requirement or
need may have a Rationale
attached that references the vali-
dation method(s).

UML::Trace,
SysML:Derive
SysML::Rationale

Require-
ment

1.0

Note 1 Y Verification methods of analysis
and similarity may be modeled
as a Rationale with reference to
the specific analysis report or
other reference data. Verification
methods including Test, Inspec-
tion, and Demonstration may be
modeled as a TestCase

SysML::Rationale,
SysML::TestCase

Require-
ment

1.0

Note 2 Partial Validation methods are user
defined. SysML::Rationale can
reference any of the user defined
methods.

SysML::Rationale Require-
ment

1.0
SysML Specification v. 0.90 (Draft) 225

6.5.5.2 Test case Partial A test case refers to the method
for verifying a requirement.
Note: The testing profile associ-
ates a test case with a behavior
that can include the specific
method and associated input
stimulus and response.

SysML::TestCase Require-
ment,
Behavior
(Activity,
Sequence,
State
Machine

1.0

Note 1 Partial Refer to above note on the test-
ing profile.

1.x

Note 2 Partial The test criteria can be estab-
lished via the requirement

1.x

Note 3 Partial Test cases can be composed of
other test cases, like any other
named element.

SysML::TestCase Require-
ment

1.0

6.5.5.3 Verification
result

Partial The result of a SysML::TestCase
may be expressed through its
Verdict attrbute

SysML::TestCase.V
erdict

Require-
ment

1.0

6.5.5.4 Requirement
verification

Partial A parametric constraint may be
used to relate the required value
with the verification result.

SysML::ParamCon-
straint;SysML::Test
Case.Verdict,
SysML::Rationale

Require-
ment

1.0

6.5.5.5 Verification
procedure

Partial A rationale can be associated
with the test case or the satisfy
relationship between a require-
ment and a design, and refer-
ence a verification procedure.
Note: The testing profile will
associate a behavior with a test
case which can be implemented
by a specific procedure.

SysML::TestCase,
SysML::Rationale

Sequence 1.x

Note

6.5.5.6 Verification
system

Partial A verification system can be
modeled as any other system
(assembly) or it can be modeled
as the system environment.
However, the future integration
with the testing profile is intended
to provide explicit modeling of
the verification system.

SysML::Assembly 1.x

 6.5.6 Other

6.5.6.1 General rela-
tionships

 Y The UML general relationships
support the following require-
ments.

a Y An association relationship. UML::Association Class 1.0
226 SysML Specification v. 0.90 (Draft)

b Y A package contains packageable
elements and can represent col-
lections of elements.

UML::Package,
UML::Package-
ableElement

Class 1.0

c Partial Classes can be decomposed
using aggregation/composition.
Assemblies are classes that are
decomposed into parts (refer to
Reqt 6.5.1.1). The completeness
of the decomposition is not
explicitly represented.

UML::Association
(aggregation, com-
position),
UML::Property

Class,
Assembly

1.0

d Y A dependency relationship. UML::Dependency Class 1.0

e Y Generalization/specialization
relationship. Generalization sets
provide the means to partition
specializations to support further
categorization.

UML::Generaliza-
tion, UML::Generali-
zationSet

Class 1.0

f Y Instantiation is modeled using
Instance Specifications to
uniquely identify a classifier.

UML::Instanc-
eSpecification,
UML::InstanceValue

Class 1.0

6.5.6.2 Model views Partial A view is a stereotype of model
that represents the model from a
particular viewpoint. The view-
point is a perspective of a set of
stakehodlers and their concerns.
Both the view and the viewpoint
are represented in SysML. The
view identifies the set of model
elements that address the view-
point, and the viewpoint specifies
the stakeholders and their con-
cerns.Note: The model elements
that depict the view are visually
represented in diagrams, tables,
and other notation. Integrity
between model views is accom-
plished by creating a well formed
model. This in part results from
the constraints imposed by the
language, and in part is defined
by the specific methodology and
tools that are employed. Naviga-
tion among views results from a
tool vendor implementation.

SysML::View,
SysML::Viewpoint

Auxiliary 1.0

6.5.6.3 Diagram types Diagram
Appendix

1.0
SysML Specification v. 0.90 (Draft) 227

a The standard UML diagram
types that are needed to support
the requirements have been
included in SysML. Some addi-
tional diagram types provide
some redundant capabilities, but
have been preserved to allow
flexibility in representations and
methodologies. For example, the
sequence diagrams along with
activity and state diagrams pro-
vide overlapping capability for
representing behavior. A few dia-
gram types have not been
included explicitly in SysML,
although they are not precluded
from use along with SysML.

N/A Diagram
Appendix

1.0

b The requirements diagram and
parametric diagram have been
added to address the requrie-
ments of this RFP. In addition, a
formal mechanism has been
added to represent diagram
usages. This enables renaming
and constraining the usage of a
particular diagram type for a par-
ticular usage.

SysML::Diagra-
mUsage

Diagram
Appendix

1.0

6.5.6.4 System role Patial A part in an assembly represents
the role for a classifier in the con-
text of the enclosing assembly. It
defines the relationship between
an instance of the classifier that
types the part and an instance of
the assembly that encloses the
part. This is a primary mecha-
nism for providing a unique con-
text for a part of a whole
(enclosing assembly). The part
may use only a subset of the
behavior and properties of the
class that types the part. How-
ever, the specific mechanism for
representing the subset has not
been defined.

UML::Property Assembly 1.0

6.6 Optional
Requirements

 6.6..1 Topology

a N 1.x
228 SysML Specification v. 0.90 (Draft)

b Partial A class diagram can be used to
model relationships between
classes.

UML::Class,
UML::Association,
UML::Dependency,
UML::Generaliza-
tion

Class 1.0

 6.6..2 Documenta-
tion

Y A document (stereotype of arti-
fact).

UML::Document Diagram
Appendix

1.0

a Y The document stereotype can
include stereotype properties to
represent information about the
document..

UML::Document Auxiliary 1.0

b Y The trace relationship relates a
document to other model ele-
ments.

UML::Trace Diagram
Appendix

1.0

c N The ability to represent the text of
the document in terms of the
descriptions provided by the
related (traced) model elements
is accomplished by a tool imple-
mentation.

 6.6..3 Trade-off stud-
ies and analy-
sis

Partial Specific constructs for criteria,
weighting, and alternatives are
planned for a future version of
SysML to support modeling of
trade studies. Parametric dia-
grams can depict the relationship
between measures of effective-
ness and various system proper-
ties (including probability
distributions on their values) to
evaluate the effectiveness of a
particular system model.

SysML::ParamCon-
straint

Parametric 1.x

a N 1.x

b Partial Criteria can be modeled as prop-
perties typed by quantites.

UML::Property,
SysML::Quantity

1.x

c Partial Measures of effectiveness can
be modeled as a subclass of
requirement. The requirement
can include properties that are
typed by quantities. The para-
metric constraint can represent
the optimization function which
constraints the properties.

SysML::Measureof-
Effectivenes,
UML::Property,
SysML::Quantity,
SysML::ParamCon-
straint

1.x

6.6..4 Spatial repre-
sentation

 N
SysML Specification v. 0.90 (Draft) 229

6.6.4.1 Spatial refer-
ence

 N

6.6.4.2 Geometric
relationships

 N

6.6..5 Dynamic struc-
ture

a Y The action semantics provide the
capability for creating and
destroying objects.

UML::CreateObjec-
tAction,
UML::DestroyObjec-
tAction

Action
(UML
Spec)

1.0

b Partial The capability is partially pro-
vided by 6.6.5a.

2.0

c N 2.0

d N 2.0

 6.6..6 Executable
semantics

Partial The action semantics are
intended to provide execution
semantics. There is no formal
graphical syntax for this.

UML::Action Action in
UML Spec

1.0

 6.6..7 Other behav-
ior modeling
paradigms

 Y A UML behavior is a generalized
behavior that can accommodate
a wide range of behavior model-
ing paradigms. This include func-
tion based, state based, and
message based behavior
(sequence diagrams).

UML::Behavior Activity,
Sequence,
State
Machine

1.0

 6.6..8 Integration with
domain-spe-
cific models

Partial SysML is a general purpose lan-
guage that can integrate with
other types of domain specific
models. This is accomplished in
part by the alignment with the
AP-233 data interchange stan-
dard. In addition, the parametric
diagram is intended to provide a
capability to integrate with
domain specific engineering
analysis models.

Paramet-
ric,
AP-233
Appendix

1.x,
2.0

 6.6..9 Testing
Model

Partial SysML is intended to be inte-
grated with the UML Testing Pro-
file. Refer to Response to Reqt
6.5.5 above.

SysML::TestCase Require-
ment

1.x

 6.6..10 Manage-
ment Model

 N
230 SysML Specification v. 0.90 (Draft)

Appendix F. ISO AP233 Alignment

Editorial Comment: The architectural alignment of SysML and AP233 is an ongoing activity since AP233 is not
finalized yet. Therefore this chapter reflects the current status of the work. It gives background information on
AP233, the alignment approach and a mapping of the requirements module.

F.1 Background
This appendix describes the alignment activities between SysML and ISO 10303 AP233. SysML as thoroughly described in
this document is the standardized modeling language for systems engineering. SysML will support the whole product/project
lifecycle from specification through to verification, validation and maintenance of the system. This involves engineers from
various disciplines and their specific tools. As systems engineers are in charge to coordinate the systems development the data
or model has also to be shared between the systems engineers and the domain engineers.

AP 233 is a data exchange protocol for systems engineering data based on ISO10303 STEP (Standard for the Exchange of
Product Model Data). The basic idea of STEP to provide a tool neutral data exchange schema based on a tool-independent
meta-model. The history of STEP ranges back to the early 80s.

As SysML is based on UML 2 it can make re-use of its infrastructure for data interchange. The obvious way to do pursue this
is XMI (XML Meta-model Interchange). This is a very efficient way to exchange data between UML based tools. However
the most benefit do have UML based tools as they do implement the same meta-model based on the specification. But for tools
which meta-model is not based on the UML meta-model the integration on XMI is not impossible but more difficult.
Therefore STEP is an interesting option

For a real tool interoperability on enterprise level it is very important that the SysML data exchange is not limited to XMI. In
the frame of systems engineering ISO STEP AP233 plays an important role to help to provide interoperability within the
systems engineering tools but also to have a mapping to the domain engineering discipline related data.

F.2 ISO 10303 STEP
STEP (ISO 10303) is a standard to describe, represent and exchange industrial data in a computer interpretable format. For
different application domains for data exchange a neutral (i.e. tool independent) data model has to be defined. This is called
AP (Application protocol). Currently around 40 different APs are defined. Among other the following application protocols
are defined respectively under definition:

• AP203: Configuration controlled design

• AP210: Electronic assembly, interconnection and packaging design

• AP214: Core data for automotive mechanical design process

• AP233: Systems Engineering

• …

The definition of a protocol follows in a MDA like structure. It consists of the following elements:

• ARM: Application reference model which is a implementation independent model of the data

• AIM: Application implementation model is an implementation of the ARM using

• Mapping Table between the ARM and the AIM
SysML Specification v. 0.90 (Draft) 231

• Implementation methods driven from EXPRESS

To support the modeling of ISO 10303 application protocols, ISO 10303 consists of different parts to support the definition
and utilization of data models:

Descriptive methods: The modeling language for the data models is EXPRESS (part 12, respectively 14) which has a ASCII
and a graphical notation (EXPRESS-X).

Implementation methods for the implementation of the data model. It consists of

• Part 21: Clear text encoding of the exchange structure (STEP file)

• Part 23: C++ language binding of the standard data access interface

• Part 24: C language binding of the standard data access interface

• Part 25: EXPRESS (modeling language) binding to OMG XMI

• Part 28: XML representation for EXPRESS-driven data

• Conformance testing methodology and framework

Integrated resources which are models common to the different application protocols and can be re-used for the
implementation

For the integration of a tool to an ISO 10303 application protocol the tool vendor has to do the mapping between the tool-
internal (proprietary) information models to the standardized data exchange model using an API (e.g. using a part 23 based
C++ API). Because of the multi layer modeling approach the tool vendors do have many options in terms of API and data
appearance.

F.3 ISO 10303 / AP233
AP233 is a data exchange protocol for systems engineering data based ISO 10303 and is a neutral data exchange schema

for systems engineering data. AP233 is to support the whole system development life cycle ranging from requirements defini-
tion to system verification and validation. Within projects the system engineering activities tie together the different domain
engineering disciplines one consistent view to the system.

The same applies to the data. Systems engineering data forms the core of a systems description and has to be linked to the
remaining domain engineering data. The following UML diagram shows the AP233 and its relationship to other protocols.
AP233 makes re-use of the STEP-PDM definitions, indicated by the dependency to STEP-PDM with the stereotype <<uses>>.
The remaining packages represent other STEP application protocols. The dependencies can be read as “AP233 depends on the
definition of …” which means if a protocol will be changed this would mean that AP233 could be affected too.

The following areas are covered in the AP233 data model:

• Requirements

• Functional architecture

• Physical architecture

• Verification/Validation

• Management

• Supporting Modules as work, person, properties
232 SysML Specification v. 0.90 (Draft)

Figure F-1. AP233 and related protocols

The basic item in AP233 is a product. This is shown in the next diagram. Each package makes re-use of the
definition of a product (in the PDM sense). A requirement in the requirement package is derived from Product (in
the package Product) and inherits the properties of Product.

STEP-PDM

AP224

Mechanical

AP209

AP239

AP212AP210

AP214

AP203

AP213

AP233

UML

STEP-TRP

STEP-TAS

Electric Machining

«uses»

AP232

AP221
SysML Specification v. 0.90 (Draft) 233

Figure F-2. AP233 Toplevel Architecture

AP233 is a follow-on activity of the European SEDRES (System Engineering and Exchange Standardisation) project which
developed systems engineering data model based on the STEP technology. AP233 was launched based on the SEDRES results
and started with a modularization of the data model to ease re-use of parts of other protocols.

The current status of AP233 is the following:

• Requirements module implemented

• Text-based requirements

• Property based requirements

• Basic Structure module

• Tracing between structure and requirements

• AP233 Demonstrator Tool: To ease the understanding, demonstration and utilization of AP233 a demonstrator tool is
under development as part of the AP233 activities. It implements basic features for the definition of requirements (in
different appearances like text, property and spread-sheet), a system break-down and traceability between require-
ments and systems. Beside that it has multiple interfaces to read and write the data, not only in STEP and XML but
also interfaces to the Office world such as Work and Visio.

• Next Steps:

• Structural Module

• Behavioral Module

• Risk Module

System Requirements Documents

Product

Risk Analysis Cost ModelsVerification Validation

Properties

Work

Person

ManagementRepresentation

AP233
234 SysML Specification v. 0.90 (Draft)

• Scheduling Module

• Rules Module

• Cost Module

The major stakeholder for the AP233 development is the Incose/MDSD (Model-Driven System Design).

F.4 Approach
From systems engineering perspective the upcoming SysML tools are just a subset of tools which are used throughout the life
cycle for system development and maintainance. The challenge for any tool integration activity is to provide a mapping
between the different meta models which are used to capture the tools data. As ISO10303 STEP and in particular AP233 (for
systems engineering) provide a neutral data repository for tool integration, the SysML meta model has to be mapped to
AP233.

In order to decouple the different meta-models from AP233 and SysML it has been decided to define a mapping model. This
mapping model than is used to map the correspondent elements of AP233 and SysML to it. The mapping model is a high-level
(independent) representation of the systems engineering concepts implemented in SysML and AP233. The mapping model is
defined in UML.

The AP233 modeling is done using the STEP modeling language Express. Basically Express implements similar concepts as
UML: classes(entities), attributes, associations and inheritance. In addition to that Express has some data modeling related
modeling elemens currently not implemented in UML. But in order to have a common mapping platform it has been decided
to perform the mapping in UML. For this it is necessary to convert the AP233 model to UML. In order to achieve common
semantics for the AP233 model in UML a dedicated profile has been developed.

Appendix F-3 shows the relationship between the different models. At the bottom the mapping model can be seen which is
used to bridge the AP233 and SysML meta models. On the right hand side the AP233 model (in UML) is an instantiation of a
profiled UML, to capture and preserve Express semantics. The left hand side shows SysML as an extension of UML2.

UML1.x can be sufficiently used to capture Express based on a dedicated express profile, but will be replaced with UML2
anyway.
SysML Specification v. 0.90 (Draft) 235

Figure F-3. Models in use for the SysML to AP233 alignment

F.4.1 Capturing Express models in UML

The development of the UML profile for Express is shown in the Appendix 11-19 . In the diagram shows only the ‘core’
subset of the modeling language Express. The basic element is an entity which can be compared to a class in UML. It may
have attributes, attributes and associations. The attribut definition is similar to UML. Attributes are described with a name,
type and multiplicity. Attributes may be optional. The ‘SubTypeOf’ class defines the inheritance relationship in Express.

Express has the concept of a type which can be either an enumeration, a basic data type (real, number, string,..), a select
statement or a container class type (set, list). The select statement can be seen as a ‘one of’ relationship (e.g. a person can drive
either a car or a bike at a given time).

Derived from this conceptual model is the UML profile. This is a manual step. The relationship between can be seen as the
problem-model, the UML profile is an implementation of this problem in a UML tool using the standardized UML
extensibility mechanisms. The UML profile for the Express modeling language looks as the following:

Appendix F-5shows the Express profile for UML manually derived from the Express meta model.

<<MetaModel>>
UML 2

<<MetaModel>>
SysML

<<MetaModel>>
MappingModel

<<Profile>>
Express

<<MetaModel>>
UML 1.*

<<MetaModel>>
AP233 (UML)

<<extends>>

<<extends>>

<<instantiates>>

<<mapping>>
<<mapping>>
236 SysML Specification v. 0.90 (Draft)

Figure F-4. Excerpt of the Express meta model

ListAssociation

SetAssociation

«abstract»
Element

«abstract»
Type

Entity

SubTypeOf

superType

subType

Enumeration

Number

String

Real

Set

List

Select

SelectAssociation

-name
-type
-optional
-multiplicity

Attribute

1 *

PropertyAssociation
SysML Specification v. 0.90 (Draft) 237

Figure F-5. UML Profile for Express

F.4.2 Converting Express models to UML

The AP233 UML model will be automatically derived from the AP233 Express model. The process is shown in Appendix F-6.
Input for the conversion process is the AP233 express model. This will be parsed be a dedicated express parser which takes the
express model an produces an informal XML model capturing the express model. This can be used by a XSLT process which
takes the XML file and generates a XMI file based on the Express profile for UML.

<<metaclass>>
UmlClass

<<stereotype>>
list

<<stereotype>>
set

<<stereotype>>
select

<<stereotype>>
entity

<<metaclass>>
UmlAssociation

<<stereotype>>
SetAssociation

ZeroOrMany
One
OneOrMany

<<stereotype>>
Mulitiplicity

<<stereotype>>
SelectAssociation

<<stereotype>>
ListAssociation

True
false

<<stereotype>>
bool

<<metaclass>>
UmlAttribute

Mult : multiplicity=One
opt : bool = true

<<metaclass>>
ExpressAttribute
238 SysML Specification v. 0.90 (Draft)

Figure F-6. Activities to derive the AP233 UML model from the Express model

F.5 Model Alignment

F.5.1 SysML Requirements Model

In order to demonstrate the alignment the following shows the requirement module as described in the dedicated section
of this specification. It shows the basic elements used to describe requirements and relate them to other modeling
elements such as functions, components or test caes. The fundamental element is a requirement with the according
parameters (Requirement) . A test case (testCase) is used to demonstrate the success of the implementation of a given
requirement. To check the completeness of the design the requirement is linked to a UML element which satisfies the
requirement (RequirementSatisfaction). As this model is to define the modeling language it makes reuse of the UML
provided modeling elements. For example the RequirementVerification is a UML dependency link.

The main purpose to recall the requirements module of SysML here is to explain the differences of the different models
to justify the approach.

<<converter>>
EEP

<<converter>>
xml2XMI.xslt

<<UML Model>>
Express

Meta Model

<<manual>>
derive Profile

<<express>>
AP233.exp

<<XML>>
Model.xml

<<XML>>
AP233.xmi

<<Profile>>
UML Profile
 for Express
SysML Specification v. 0.90 (Draft) 239

Figure F-7. SysML requirements model

<<stereotype>>
RequirementSatisfaction

<<metaclass>>
UML::Dependency

<<metaclass>>
UML::NamedElement

<<metaclass>>
UML::PackageableElement

*

<<stereotype>>
testCase

<<stereotype>>
RequirementVerification

<<metaclass>>
UML::NamedElement

<<stereotype>>
SysML::ReferenceData

(from AuxiliaryConstructs)

<<stereotype>>
Rationale

<<stereotype>>
UML::Trace

+source
{redefines
supplier}

+target
{redefines
client}

<<metaclass>>
UML::Dependency

<<stereotype>>
Requirement

String text
String id
String criticality

+subRequirement
{redefines ownedElement}

*

0..1

+target
{redefines
client}

+source
{redefines
supplier}

+source
{redefines
supplier}

*

*

*

*

*

*

*

*

*

*

*

<<enumeration>>
Verdict

Verdict verdict

pass
fail
inconclusive
error
240 SysML Specification v. 0.90 (Draft)

F.5.2 AP233 Requirements Model

Figure F-8. Basic pattern for AP233

This chapter explains in brief the model of AP233 with a focus on the requirements module and the representation of
requirements. The main purpose is to explain the AP233 model and to point out the differences between SysML and AP233
models. Appendix F-8 shows an excerpt of AP233, the basic PDM (Product Data Management) pattern, consisting of
Product, Product_version and Product_view_definition. In AP233 the re-use has been done to enable the versioning of the
data captured in an AP233 file and to ease the interfacing of PDM systems. In the definition of PDM everything which has to
be produced is a product. Therfore, requirements, systems or documents are products.

In order to track the changes for each product along the life cycle configuration control has to be applied. The pattern Product,
Product_version and Product_view_definition defines the following:

-id
-name
-description

«entity»
Product

«entity»
System

«entity»
Requirement

-id
-description
-name

«entity»
Product_view_definition

of_product

-id
-description

«entity»
Product_version

defined_version

«entity»
Requirement_version

«entity»
System_version

«entity»
Requirement_view_definition

«entity»
System_view_definition

defined_version
{redefines defined_version}

of_product
{redefines of_product}

of_product
{redefines of_product}

defined_version
{redefines defined_version}
SysML Specification v. 0.90 (Draft) 241

• Product: Defines the identity of a product with an unique identifier, a name and a description

• Product_version: Captures the different versions of a product, each version is described by an identifier and a name

• Product_view_defintion: Defines the different views in which the product appears, e.g. a diagram or a table

This means that every product is represented in a tree-like manner in an AP233 file.

For each product a tree-like information is given in the AP233 file: For each product an instance of Product is the root. Each
product may appear in different versions (Product_version) and each version may appear and be reference from different
views (Product_view_definitoni).

Each product which shall be captured in AP233 this pattern has to be re-used. The re-use of this pattern will be done in AP233
via inheritance. Therefore a requirement is represented by the entities Requirement, Requirement_version and
Requirement_view_definition. All of them are derived from the according product items. This means a

• Requirment ‘is a’ Product

• Requirment_version ‘is a’ Product_version’

• Requirement_view_definition ‘is a’ Produc_view_definition

The definition of a system is done accordingly which is shown in the diagram. For other items such as connectors or ports this
pattern has to be replicated too in the same way.

The assignment of properties to a product is shown in Appendix F-9. Proptiertes are additional descriptions or parameters
which have to be attached to a product. Those properties can be for example descriptions, role or context definitions. For a
SysML requirement the attributes as defined in Appendix F-7 (id, text and criticality) would be attached as property. As
explained per above the Product_view_definition is used to attach the detailed information to the requirement.

The top of the diagram shows Product_view_definition and its derived classes Requirement_view_definition and
System_view_definition. The property_assigment_select is used to attach the properties either to Produc_view_definition or to
Tracing_relationship. Element_property describes the property being attached. The select statement represented_item_select
contains just one choice, the Element_property. The class property representation describes the representation for the property
attached. The class Representation gives detailed information on the representation occurrence of the property. It can be
broken down hierarchically (Represenation_relationship) and has links to the different representation items
(Representation_item).

The different representation items are further detailed in Appendix F-10. It shows the hierarchy of the different represenations:
Data_structure, Element_in_structure, String_representation_item, Binary_representation_item, Document_definition,
Mathematical_representation_item, Property_value_with_unit, Descriptive_property_value and Plain_text_item. It is
possible to arrange the different representation items in data structures. A data structure consists of elements, an element of a
data structure can be for example Binary_representation_item, Document_definition, Mathematical_representation_item,
Property_value_with_unit or a Descriptive_property_value.

This represention module of AP233 described here is just a subset of the AP233 representation.
242 SysML Specification v. 0.90 (Draft)

Figure F-9. Property assignment

-described_element
-description
-name

«entity»
Element_property

-described_element
-description
-name

«select»
property_assignment_select

described_element

-name
-description
-id

«entity»
Representation

items

-role
-description

«entity»
Property_representation

property

«select»
represented_item_select

rep

-id
-description
-name

«entity»
Product_view_definition

«entity»
Tracing_relationship

-description
-relationship_type

«entity»
Representation_relationship

rep_1

rep_2

-described_element
-description
-name

«entity»
Representation_item

«entity»
Requirement_view_definiton

«entity»
System_view_definition
SysML Specification v. 0.90 (Draft) 243

Figure F-10. Representation of properties in AP233

-described_element
-description
-name

«entity»
Representation_item

-position

«entity»
Element_in_structure

-description

«entity»
Data_structure

-label
-size

«entity»
Data_structure_dimension

dimension
elements

elements

«select»
data_structure_element

elements

structure

elements

-description

«entity»
Descriptive_property_value

«entity»
Mathematical_representation_item

-description

«entity»
Plain_text_item

«entity»
String_representation_item

-encoded_data
-MIME_extension
-MIME_type

«entity»
Binary_representation_item

-id
-description
-associated_document_version

«entity»
Document_definition

-property_value
-unit

«entity»
Property_value_with_unit
244 SysML Specification v. 0.90 (Draft)

The hierachical breakdown structure of AP233 is shown in Appendix F-11. As explained per above the hierarchical
breakdown structure will also be applied to the corresponding view definition items (e.g. Requirement_view_definition,
System_view_definition, ...). The View_definition_relationship provides a hierarchial decomposition for
Product_view_definition items. View_definition_relationship will be further refined for the items derived from
Product_view_definition.

The class Requirement_view_definition, derived from Product_view_definition is used to represted the links to the
requirements. As explained before it is used to attache the properties to the requirement. It is also used to define the
hierarchical breakdown structure for requirements, called traceability links. The traceablility links are established by the item
Tracing_relationship. It connects derived requirements on different hierarchical levels to each other.

System_view_definition represents items of the system hierarchy. System_view_definitions can be hierachically linked to each
other (System_view_definition_relationship). Important to mention that System_view_definition itself is an abstract class and
will be further detailled in the subsequent diagrams.

Allocations between requirements and system items are represented by System_requirement_relationship.

In diagram Appendix F-12 the different system breakdown hierarchies are shown. The class System_design represents
system design items and is derived from System_view_definition. System design items can be seen as items on the
specification (design) level. System design items can be hierarchically decomposed (System_assembly_relationship).

Concrete physical items are represented by System_occurrence (It can be seen as a class (System_design) and instance
(System_occurence) releationship for object oriented systems). The items on design levels represent the ‘shall-by’ status
of a system. The system occurence items do represent real existing items (‘with serial numbers’).

The physical assembly of a system follows the design items hierarchy, but is not necessarily the same, due to integration
constraints. Therfore another breakdown is required to show how the system must be assembled, often called integration
tree. Integration tree links are established by System_occurrence_assembly items. System_occurrence items have a link to
System_view_definition items to show which part of the system they represent.

All of the items used to represent system hierarchy links (System_occurrence_relationship,
System_view_definition_relationship and System_assembly_relationship) are derived from View_definition_relationship.
SysML Specification v. 0.90 (Draft) 245

Figure F-11. Breakdown structure in AP233

relating_view
{redefines relating_view}

relating_view
{redefines relating_view}

-id
-description
-name

«entity»
Product_view_definition

«entity»
Requirement_view_definition

«entity»
System_view_definition

-id
-description
-name

«entity»
Tracing_relationship

-id
-description
-relation_type

«entity»
View_definition_relationship

relating_viewrelated_view

«entity»
System_view_definition_relationship

«entity»
System_requirement_relationship

related_view
{redefines related_view}

related_view
{redefines related_view}

relating_view
{redefines relating_view}

relating_view
{redefines relating_view}
246 SysML Specification v. 0.90 (Draft)

Figure F-12. System breakdown hierarchy

-id
-description
-name

«entity»
Product_view_definition

«entity»
System_view_definition

-id
-description
-relation_type

«entity»
View_definition_relationship

relating_view

related_view

relating_view
{redefines relating_view}

«entity»
System_view_definition_relationship

-complete

«entity»
System_design

-id
-description
-name

«entity»
System_assembly_relationship

related_view
{redefines related_view}

relating_view
{redefines relating_view}

related_view
{redefines related_view}

related_view
{redefines related_view}

relating_view
{redefines relating_view}

«entity»
System_usage

«entity»
Product_occurrence

design

«entity»
System_occurrence

design

«entity»
System_occurence_assembly
SysML Specification v. 0.90 (Draft) 247

F.5.3 Mapping Module: Requirements

Figure F-13. Mapping Module Requirements

In Appendix F-13 the requirements part of the mapping model is shown. The main difference to the SysML and the
AP233 model is the following: The mapping model doesn’t address any specify data modeling items and makes not re-use
of UML infra- or superstructure definition. Therfore the mapping model can be seen as an independent instance of the
MOF. It serves as a kind of requirements model for system engineering conceptst.

-text
-id
-criticality

Requirement

1

+subrequirement *

ReqTrace

target

r0

source

r1

ReqVerification

ReqSatisfaction

satisfies
reqreq

verifies

«select»
ReqSatisfySelect

req
satisfies

Function

Component

Interface

«select»
ReqVerifySelect

tests

req

TestCase

Review
248 SysML Specification v. 0.90 (Draft)

Requirement hierarchies are indicated with ReqTrace, which connects requirements on different hierachical levels. A
requirement can be linked to verification elements (ReqVerification) and system modeling elements (ReqSatisfaction). On
the left hand side two examples for a requirement verifcation are shown (TestCase, Review). On the reight hand side
different elements which can satisfy a requirements (Function, Component, Interface). Both, verification as well as
system elements are just a deliberate selection and not exhaustive.

It is import to mention that, in order to ease the mapping, that the ‘select’ statement of Express has been reused. All of
the different choices for example for the requirement satisfaction are listed explicitly, similiar to Express.

F.5.4 Mapping between AP233 and SysML

F.6 Proof of Concept:
ISO10303 STEP application protocols provide a neutral data representation which can be used to collect the data from
different tools and capture them in an independent data repository. For this STEP protocols have to provide a generic superset
of data items used by the tools. This and some addional concepts required for efficient data modeling STEP application
protocols are considered to be ‘complicated’ and difficult to integration into an existing infrastructure. Therefore nowadays

Table 1

SysML Mapping Model AP233

010 Requirement Requirement Requirement
Requirement_version
Requirement_view_definition

011 text text Plain_text_item

012 id id Requirement.id

013 criticality criticality Plain_text_item

020 Trace ReqTrace Tracing_relationship

021 target r0 relating_view

022 source r1 related_view

030 RequirementVerification ReqVerification

031 target verifies

032 source req

040 RequirementSatisfaction ReqSatisfaction System_requirement_relationship

041 target satisfies relating_view

042 source req related_view
SysML Specification v. 0.90 (Draft) 249

often short-handed XML solutions are preferred instead of integrating STEP.

In order to hide the complexity often a more abstract model (and a related API) is placed on top of STEP protocols. Those
APIs do focus on user known concepts and are therefore easier to understand and integrated. But still using the power of STEP
as the underlying data model. The mapping model, well mapped to AP233 is high-level model of system engineering concepts.

As both the AP233 and the mapping model are represented in UML they can be used to derive APIs applying the MDA
approach to it. In order to obtain an open, robust framework two independent APIs will be generated. One on the AP233 native
level and one on the mapping (conceptual) level. This approach also can be used to in cooperate other tools. In Appendix F-14
the different models and APIs are shown.

The resulting API architecture is shown in the Appendix F-15. It shows the different layer of abstraction from the bottom (in
this case a STEP file in different representations) to the top different SE tools. The yellow layers show the two different APIs.
As examples for tools we see on the top SysML tools, or UML tools which implements selected parts of SysML in terms of
profiles and classic SE tools which have nothing in common (with respect to the meta-model) with UML based tools. The
mapping model API provides an easy to integrate API based on the conceptual level. In order to integrate it an adaptor has to
be written which converts the model (as instance of the meta model) into the representation of the mapping model. For SysML
tools this converter can be written based on the mapping model. Based on the mapping between the mapping model and the
AP233 model the adaptor can be automatically generated. Finally the AP233 API provides the conversion between the
representation as instance of the model to the file representation.

Based on the APIs the mapping between AP233 and SysML can be verified and the success demonstrated. Finally the APIs
will be made freely available for further dissemination of the approach.

Figure F-14. Model-derived APIs

<<C++>>
AP233 API

<<MetaModel>>
SysML

<<MetaModel>>
MappingModel

<<MetaModel>>
AP233 (UML)

<<mapping>>

<<mapping>>

<<C++>>
Systems Eng.
High Level API

<<generated>>

<<generated>>
250 SysML Specification v. 0.90 (Draft)

Figure F-15. API abstraction layers

AP233/p28 File (XML) AP233/p21 File (STEP)

Map AP233 Data 2 XML Map AP233 data 2 p21

AP233 API

Map Mapping Model data 2 AP233

Mapping Model based API

SysML Tool(s)

Map SysML data 2 M-
Model

Map UML2 data 2 M-
Model

UML/SysMLprofile Tools SE Tool(s)

Map SE data 2 M-Model

Alignment Working Group Scope
SysML Specification v. 0.90 (Draft) 251

252 SysML Specification v. 0.90 (Draft)

Appendix G. OMG XMI Alignment

Editorial Comment: The architectural alignment of SysML and OMG MOF XMI 2.0 is an ongoing activity since OMG
MOF XMI 2.0 is not finalized yet.

The XMI for serializing SysML as an instance of MOF 2.0 according to the rules specified by the proposed MOF2 XMI spec-
ification will be made available in a separate document soon after the MOF2 XMI specification is finalized.
SysML Specification v. 0.90 (Draft) 253

254 SysML Specification v. 0.90 (Draft)

	Systems Modeling Language (SysML) Specification
	Preface for OMG Submission
	Part I. Introduction
	1 Scope
	2 Compliance
	3 Normative references
	4 Terms and definitions
	5 Symbols
	6 Additional information
	7 Language Architecture
	8 Language Formalism
	Part II - Structural Constructs
	9 Classes
	10 Assemblies
	11 Parametrics
	Part III - Behavioral Constructs
	12 Activities
	13 Interactions
	14 State Machines
	15 Use Cases
	Part IV - Crosscutting Constructs
	16 Requirements
	17 Allocations
	18 AuxiliaryConstructs
	19 Profiles
	Part V - Appendices
	Appendix A. Diagrams
	Appendix B. Sample Problem
	Appendix C. Specialized Usages
	Appendix D. Model Libraries
	Appendix E. Requirements Traceability
	Appendix F. ISO AP233 Alignment
	Appendix G. OMG XMI Alignment

